Activity

  • Campbell posted an update 8 months, 3 weeks ago

    including microbial biostimulants, may influence soil bacterial communities associated with different plant species, and shows that caution is required when linking soil biodiversity to plant growth. In this case, the microbial biostimulant influenced soil biodiversity without influencing plant growth.The coronavirus disease 2019 (COVID-19) pandemic has been raging around the world since January 2020. Pregnancy places the women in a unique immune scenario which may allow severe COVID-19 disease. In this regard, the potential unknown effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on mothers and fetuses have attracted considerable attention. There is no clear consistent evidence of the changes in the immune status of pregnant women after recovery from COVID-19. find more In this study, we use multiparameter flow cytometry and Luminex assay to determine the immune cell subsets and cytokines, respectively, in the peripheral blood and umbilical cord blood from pregnant women recovering from COVID-19 about 3 months (n=5). Our results showed decreased percentages of Tc2, Tfh17, memory B cells, virus-specific NK cells, and increased percentages of naive B cells in the peripheral blood. Serum levels of IL-1ra and MCP-1 showed a decreased tendency in late recovery stage (LRS) patients. Meanwhile, there was no significant difference in immune cell subsets in the umbilical cord blood. The placentas from LRS patients showed increased CD68+ macrophages infiltration and mild hypoxic features. The inflammatory damage of the placenta may be related to the antiviral response. Since the receptors, ACE2 and TMPRSS2, utilized by SARS-CoV-2 are not co-expressed in the placenta, so it is extremely rare for SARS-CoV-2 to cause infection through this route and the impact on the fetus is negligible.After the COVID-19 outbreak, non-evidence based guidelines were published to advise clinicians on the adjustment of oncological treatment during this pandemic. As immune checkpoint inhibitors directly affect the immune system, concerns have arisen about the safety of immunotherapy during this pandemic. However, data on the immune response in oncology patients treated with immunotherapy are still lacking. Here, we present the adaptive immune response in a SARS-CoV-2 infected patient who was treated with immune checkpoint inhibitors for advanced renal cell cancer. To evaluate the immune response in this patient, the number of T cells and their major subsets were measured according to expression of markers for co-signalling, maturation, and chemotaxis at baseline, during therapy, and during the SARS-CoV-2 infection. In addition, plasma samples were analyzed for IgM and IgG antibodies and the ability of these antibodies to neutralise SARS-CoV-2. Despite several risk factors for an impaired immune response to SARS-CoV-2, both T- and B-cell responses were observed. Moreover, after treatment with immune checkpoint inhibitors, a sufficient cellular and humoral immune response was achieved in this SARS-CoV-2 infected patient. These findings warrant renewed discussion on withholding of immune checkpoint inhibitors during an ongoing COVID-19 pandemic.Sepsis is a life-threatening systemic illness attributed to a dysregulated host response to infection. Sepsis is a global burden killing ~11 million persons annually. In December 2019, a novel pneumonia condition termed coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged and has resulted in more than 1,535,982 deaths globally as of 8th December 2020. These two conditions share many pathophysiological and clinical features. Notably, both sepsis and COVID-19 patients experience consumptive thrombocytopenia, haemolytic anaemia, vascular microthrombosis, multi-organ dysfunction syndrome, coagulopathy, septic shock, respiratory failure, fever, leukopenia, hypotension, leukocytosis, high cytokine production and high predisposition to opportunistic infections. Considering the parallels in the immunopathogenesis and pathophysiological manifestations of sepsis and COVID-19, it is highly likely that sepsis care, which has a well-established history in most health systems, could inform on COVID-19 management. In view of this, the present perspective compares the immunopathogenesis and pathophysiology of COVID-19 and non-SARS-CoV-2 induced sepsis, and lessons from sepsis that can be applicable to COVID-19 management.The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a fast spreading virus leading to the development of Coronavirus Disease-2019 (COVID-19). Severe and critical cases are characterized by damage to the respiratory system, endothelial inflammation, and multiple organ failure triggered by an excessive production of proinflammatory cytokines, culminating in the high number of deaths all over the world. Sedentarism induces worse, continuous, and progressive consequences to health. On the other hand, physical activity provides benefits to health and improves low-grade systemic inflammation. The aim of this review is to elucidate the effects of physical activity in physical fitness, immune defense, and its contribution to mitigate the severe inflammatory response mediated by SARS-CoV-2. Physical exercise is an effective therapeutic strategy to mitigate the consequences of SARS-CoV-2 infection. In this sense, studies have shown that acute physical exercise induces the production of myokines that arefor COVID-19 at all ages and different chronic conditions.We used functional -omics angles and examined transcriptomic heterogeneity in CD4+Foxp3+ regulatory T cells (Treg) from spleen (s-Treg), lymph nodes (LN-Treg), intestine (int-Treg), and visceral adipose tissue (VAT-Treg), and made significant findings 1) Five new shared Treg genes including NIBAN, TNFRSF1b, DUSP4,VAV2, and KLRG1, and 68 new signatures are identified. Among 27 signaling pathways shared in four tissue Treg, 22 pathways are innate immune pathways (81.5%); 2) s-Treg, LN-Treg, int-Treg, and VAT-Treg have zero, 49, 45, and 116 upregulated pathways, respectively; 3) 12, 7, and 15 out of 373 CD markers are identified as specific for LN-Treg, int-Treg, and VAT-Treg, respectively, which may initiate innate immune signaling; 4) 7, 49, 44, and 79 increased cytokines out of 1176 cytokines are identified for four Treg, respectively, suggesting that Treg have much more secretory proteins/cytokines than IL-10, TGF-β, and IL-35; 5) LN-Treg, int-Treg, and VAT-Treg have 13 additional secretory functions more than s-Treg, found by analyzing 1,706 secretomic genes; 6) 2, 20, 25, and 43 increased transcription factors (TFs) out of 1,496 TFs are identified four Treg, respectively; 7) LN-Treg and int-Treg have increased pyroptosis regulators but VAT-Treg have increased apoptosis regulators; 8) 1, 15, 19, and 31 increased kinases out of 661 kinome are identified for s-Treg, LN-Treg, int-Treg, and VAT-Treg, respectively; 9) comparing with that of s-Treg, LN-Treg, int-Treg, and VAT-Treg increase activated cluster (clusters 1-3) markers; and decrease resting cluster (clusters 4-6) markers; and 10) Treg promote tissue repair by sharing secretomes and TFs AHR, ETV5, EGR1, and KLF4 with stem cells, which partially promote upregulation of all the groups of Treg genes.

Skip to toolbar