-
Amstrup posted an update 7 months, 1 week ago
Heavy metals have caused widespread concern due to their adverse effects on aquatic organisms. However, there are few studies on their tolerance mechanism. In this study, the tolerance mechanisms of Cyclotella sp. to Cr(VI) were explored. The increase of antioxidant enzymes activity acting as a defense mechanism could help Cyclotella sp. to reduce the oxidative damage caused by the heavy metal Cr(VI). Cr(VI) was also combined with the functional groups on the cell surface to detoxify and was transported into the cell by binding to the carrier protein. In addition, it is worth noting that the molecular docking simulation showed that Cr(VI) combined with macromolecular compounds in cells through hydrogen and ionic bonds, which can reduce the toxicity of chromium. The determination of chromium content in cells showed that chromium was accumulated in cells. Furthermore, the low concentration of Cr(VI) had a growth stimulation on Cyclotella sp., while the growth of Cyclotella sp. microalgae was obvious inhibited when Cr(VI) concentration was over 0.5 mg/L. Naporafenib cell line The content of Chlorophyll a (Chl-a) and soluble protein both had a dramatic change under the stress of Cr(VI). Cell ultrastructure analysis showed that plasmolysis phenomenon and dissolution of organelle structures when Cyclotella sp. was exposed to Cr(VI). The series of changes in Cyclotella sp. allow it to be an indicator of Cr(VI) pollution in water. Meanwhile, these findings were helpful to further understand the tolerance mechanism of Cr(VI) on microalgae and provide new insights to assess Cr(VI) toxicity to the microalgae.Mangrove plays an important role in modulating global warming through substantial blue carbon storage relative to their greenhouse gas emission potential. The presence of heavy metals in mangrove wetlands can influence soil microbial communities with implications for decomposition of soil organic matter and emission of greenhouse gases. In this study, field monitoring and a microcosm experiment were conducted to examine the impacts of heavy metal pollution on soil microbial communities and greenhouse gas fluxes. The results show that heavy metal pollution decreased the richness and diversity of the overall soil microbial functional groups (heterotrophs and lithotrophs); however, it did not inhibit the activities of the methanogenic communities, possibly due to their stronger tolerance to heavy metal toxicity compared to the broader soil microbial communities. Consequently, the presence of heavy metals in the mangrove soils significantly increased the emission of CH4 while the emission of CO2 as a proxy of soil microbial respiration was decreased. The soil organic carbon content could also buffer the effect of heavy metal pollution and influence CO2 emissions due to reduced toxicity to microbes. The findings have implications for understanding the complication of greenhouse gas emissions by heavy metal pollution in mangrove wetlands.In this study, tritium levels in commercially sold bottled natural and mineral waters in Turkey and Azerbaijan were determined. Tritium measurements were performed using Liquid Scintillation Counter (PerkinElmer TriCarb 2910 TR). 16 natural and 11 mineral samples from Turkey and 7 natural and 8 mineral samples from Azerbaijan, for a total of 42 commercially sold water samples were analyzed. The Minimum Detectable Activity (MDA) value for the method used was found as 1.69 Bq L-1. In total, 7 of the natural water samples and 8 of the mineral water samples were found to be below the MDA value. The average activity concentrations in natural and mineral water samples were found as 2.23 ± 0.90 Bq L-1 and 2.51 ± 0.90 Bq L-1 for Turkey and 2.69 ± 0.91 Bq L-1 and 2.43 ± 0.89 Bq L-1 for Azerbaijan, respectively. In addition, annual effective dose rates and lifetime cancer risk values for the water samples were calculated. These radiological parameters were compared with the values recommended by international organizations. The results demonstrated that consumption by humans of the studied waters would not constitute any health risks in terms of tritium.Pollution from microplastics (MPs) has become one of the most relevant topics in environmental chemistry. The risks related to MPs include their capability to adsorb toxic and harmful molecular species, and to release additives and degradation products into ecosystems. Their role as a primary source of a broad range of harmful volatile organic compounds (VOCs) has also been recently reported. In this work, we applied a non-destructive approach based on selected-ion flow tube mass spectrometry (SIFT-MS) for the characterization of VOCs released from a set of plastic debris collected from a sandy beach in northern Tuscany. The interpretation of the individual SIFT-MS spectra, aided by principal component data analysis, allowed us to relate the aged polymeric materials that make up the plastic debris (polyethylene, polypropylene, and polyethylene terephthalate) to their VOC emission profile, degradation level, and sampling site. The study proves the potential of SIFT-MS application in the field, as a major advance to obtain fast and reliable information on the VOCs emitted from microplastics. The possibility to obtain qualitative and quantitative data on plastic debris in less than 2 min also makes SIFT-MS a useful and innovative tool for future monitoring campaigns involving statistically significant sets of environmental samples.Biodiesel is a fuel that has numerous benefits over traditional petrodiesel. The transesterification process is the most popular method for biodiesel production from various sources, categorized as first, second and third generation biodiesel depending on the source. The transesterification process is subject to a variety of factors that can be taken into account to improve biodiesel yield. One of the factors is catalyst type and concentration, which plays a significant role in the transesterification of biodiesel sources. At present, chemical and biological catalysts are being investigated and each catalyst has its advantages and disadvantages. Recently, nanocatalysts have drawn researchers’ attention to the efficient production of biodiesel. This article discusses recent work on the role of several nanocatalysts in the transesterification reaction of various sources in the development of biodiesel. A large number of literature from highly rated journals in scientific indexes is reviewed, including the most recent publications.