-
Duus posted an update 7 months, 1 week ago
We study the nonequilibrium steady-state (NESS) dynamics of two-dimensional Brownian gyrators under harmonic and nonharmonic potentials via computer simulations and analyses based on the Fokker-Planck equation, while our nonharmonic cases feature a double-well potential and an isotropic quartic potential. In particular, we report two simple methods that can help understand gyrating patterns. For harmonic potentials, we use the Fokker-Planck equation to survey the NESS dynamical characteristics; i.e., the NESS currents gyrate along the equiprobability contours and the stationary point of flow coincides with the potential minimum. As a contrast, the NESS results in our nonharmonic potentials show that these properties are largely absent, as the gyrating patterns are very distinct from those of corresponding probability distributions. Furthermore, we observe a critical case of the double-well potential, where the harmonic contribution to the gyrating pattern becomes absent, and the NESS currents do not circulate about the equiprobability contours near the potential minima even at low temperatures.Granger causality (GC) is a statistical notion of causal influence based on prediction via linear vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the local Granger causality, i.e., the profile of the information transferred from the driver to the target process at each discrete time point; in this frame, GC is the average of its local version. We show that the variability of the local GC around its mean relates to the interplay between driver and innovation (autoregressive noise) processes, and it may reveal transient instances of information transfer not detectable from its average values. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear complex systems studied in the Gaussian approximation.The linear evolution of the incompressible Rayleigh-Taylor instability for the interface between an elastic-plastic slab medium and a lighter semi-infinite ideal fluid beneath the slab is developed for the case in which slab is attached to a rigid wall at the top surface. The theory yields the maps for the stability in the space determined by the initial perturbation amplitude and wavelength, as well as for the transition boundary from the elastic to the plastic regimes for arbitrary thicknesses of the slab and density contrasts between the media. In particular, an approximate but very accurate scaling law is found for the minimum initial perturbation amplitude required for instability and for the corresponding perturbation wavelength at which it occurs. These results allows for an interpretation of the recent experiments by Maimouni et al. [Phys. Rev. Lett. 116, 154502 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.154502].The design of small scale nonequilibrium steady states (NESS) is a challenging, open ended question. While similar equilibrium problems are tractable using standard thermodynamics, a generalized description for nonequilibrium systems is lacking, making the design problem particularly difficult. Here we show we can exploit the large-deviation behavior of a Brownian particle and design a variety of geometrically complex steady-state density distributions and flux field flows. We achieve this design target from direct knowledge of the joint large-deviation functional for the empirical density and flow, and a “relaxation” algorithm on the desired target states via adjustable force field parameters. We validate the method by replicating analytical results, and demonstrate its capacity to yield complex prescribed targets, such as rose-curve or polygonal shapes on the plane. We consider this dynamical fluctuation approach a first step towards the design of more complex NESS where general frameworks are otherwise still lacking.Endotoxin adsorption therapy by polymyxin B-immobilized fiber column direct hemoperfusion (PMX-DHP) has been used for the treatment of septic shock patients. Endotoxin, an outer membrane component of Gram-negative bacteria, plays an important role in the pathogenesis of septic shock. see more Endotoxin triggers a signaling cascade for leukocytes, macrophage, and endothelial cells to secrete various mediators including cytokines and nitric oxide, leading to septic shock and multiple organ dysfunction syndrome. PMX-DHP directly adsorbed not only endotoxin but also monocytes and anandamide. It reduced blood levels of inflammatory cytokines such as interleukin (IL)-1, IL-6, tumor necrosis factor-alpha and IL-17A, adhesion molecules, plasminogen activator inhibitor 1, and high mobility group box-1. As a result, PMX-DHP increased blood pressure and reduced the dose of vasoactive-inotropic agents. PMX-DHP improved monocyte human leukocyte antigen-DR expression in patients with severe sepsis and septic shock. A post hoc analysis of EUPHRATES (Evaluating the Use of Polymyxin B Hemoperfusion in Randomized Controlled Trial of Adults Treated for Endotoxemia and Septic Shock) trial has shown that PMX-DHP significantly reduced 28-day mortality compared with the control group in septic shock patients with endotoxin activity assay level between 0.60 and 0.89. Longer duration of PMX-DHP may be another strategy to bring out the beneficial effects of PMX-DHP. Further studies are needed to confirm the efficacy of PMX-DHP treatment for septic shock.Bacteria, including those that are pathogenic, have been generally classified according to their ability to survive and grow in the presence or absence of oxygen aerobic and anaerobic bacteria, respectively. Strict aerobes require oxygen to grow (e.g., Neisseria), and strict anaerobes grow exclusively without, and do not survive oxygen exposure (e.g., Clostridia); aerotolerant bacteria (e.g., Lactobacilli) are insensitive to oxygen exposure. Facultative anaerobes (e.g., E. coli) have the unique ability to grow in the presence or in the absence of oxygen and are thus well-adapted to these changing conditions, which may constitute an underestimated selective advantage for infection. In the WHO antibiotic-resistant ‘priority pathogens’ list, facultative anaerobes are overrepresented (8 among 12 listed pathogens), consistent with clinical studies performed in populations particularly susceptible to infectious diseases. Bacteria aerobic respiratory chain plays a central role in oxygen consumption, leading to the formation of hypoxic infectious sites (infectious hypoxia).