Activity

  • Goodwin posted an update 11 months, 4 weeks ago

    86 seconds, 1.09 seconds and 4.34 seconds for calculating azimuthally averaged radiance. DISORT with 16 streams takes 1521.56 seconds and 127.64 seconds under the same condition. As a new solver, DOAM has been integrated into ARMS and is used to simulate the brightness temperatures at MicroWave Humidity Sounder (MWHS) as well as MicroWave Radiation Imager (MWRI) frequencies. The simulations by DOAM are compared to those by Doubling Adding method and accuracy of both solvers shows a general agreement. All the results show that the DOAM is accurate and computational efficient for applications in NWP data assimilation and satellite remote sensing.Injection locking and pulling characteristics of a long-loop optoelectronic oscillator (OEO) that has a large number of closely-spaced longitudinal modes are theoretically analyzed and experimentally evaluated. A differential phase equation that relates the phase difference between the OEO and the injected microwave signal to its instantaneous beat angular frequency is derived in the time domain. SR0813 Based on the differential phase equation, both the locking and pulling characteristics of an injection-locked OEO are studied, and the phase noise performance is analyzed. It is found that the locking and pulling performance depends upon three parameters, the initial frequency difference between the frequency of the signal generated by the free-running OEO and frequency of the injected microwave signal, the voltage ratio between the signal generated by the free-running OEO and the injected microwave signal, and the Q factor of the free-running OEO. The phase noise performance depends upon the locking range, the phase noise performance of the free-running OEO as well as that of the injected microwave signal. The analysis is validated experimentally. Excellent agreement is found between the theoretical analysis and the experimental demonstration.We investigate optical Tamm states supported by a dielectric grating placed on top of a distributed Bragg reflector. It is found that under certain conditions the Tamm state may become a bound state in the continuum. The bound state, in its turn, induces the effect of critical coupling with the reflectance amplitude reaching an exact zero. We demonstrate that the critical coupling point is located in the core of a vortex of the reflection amplitude gradient in the space of the wavelength and angle of incidence. The emergence of the vortex is explained by the coupled mode theory.We leverage the high spatial and energy resolution of monochromated aberration-corrected scanning transmission electron microscopy to study the hybridization of cyclic assemblies of plasmonic gold nanorods. Detailed experiments and simulations elucidate the hybridization of the coupled long-axis dipole modes into collective magnetic and electric dipole plasmon resonances. We resolve the magnetic dipole mode in these closed loop oligomers with electron energy loss spectroscopy and confirm the mode assignment with its characteristic spectrum image. The energy splitting of the magnetic mode and antibonding modes increases with the number of polygon edges (n). For the n=3-6 oligomers studied, optical simulations using normal incidence and s-polarized oblique incidence show the respective electric and magnetic modes’ extinction efficiencies are maximized in the n=4 arrangement.Programmable photonic integrated circuits have mainly been developed based on the single wavelength channel operation of fundamental building blocks consisting of Mach-Zehnder interferometers (MZIs) with tunable phase shifters. We propose and study optical circuit models consisting of cascaded optical resonators that enable the independent operation of multiple wavelength channels in a more compact footprint than the conventional MZIs. By adopting experimental values reported for silicon micro-ring resonators, the fidelities of different types of 2×2 unitary transformations and higher-dimensional unitary transformations are examined by employing the Reck algorithm and the Clements algorithm.We utilized the all-copropagating scheme, which maintains the phase-match condition, in the spontaneous four-wave mixing (SFWM) process to generate biphotons from a hot atomic vapor. The linewidth and spectral brightness of our biphotons surpass those of the biphotons produced with the hot-atom SFWM in the previous works. Moreover, the generation rate of the sub-MHz biphoton source in this work can also compete with those of the sub-MHz biphoton sources of the cold-atom SFWM or cavity-assisted spontaneous parametric down conversion. Here, the biphoton linewidth is tunable for an order of magnitude. As we tuned the linewidth to 610 kHz, the generation rate per linewidth is 1,500 pairs/(s·MHz) and the maximum two-photon correlation function, gs,as(2), of the biphotons is 42. This gs,as(2) violates the Cauchy-Schwarz inequality for classical light by 440 folds, and demonstrates that the biphotons have a high purity. By increasing the pump power by 16 folds, we further enhanced the generation rate per linewidth to 2.3×104 pairs/(s·MHz), while the maximum gs,as(2) became 6.7. In addition, we are able to tune the linewidth down to 290±20 kHz. This is the narrowest linewidth to date among all single-mode biphoton sources of room-temperature and hot media.We used above- and below-water radiometry measurements collected during a research voyage in the eastern Indian Ocean to assess uncertainties in deriving the remote sensing reflectance, Rrs, from unattended above-water radiometric data collection with the In-Situ Marine Optics Pty. Ltd. (IMO) Dynamic Above-water Radiance (L) and Irradiance (E) Collector (DALEC). To achieve this, the Rrs values derived from using the latest version of this hyperspectral radiometer were compared to values obtained from two in-water profiling radiometer systems of rather general use in the ocean optics research community, i.e., the Biospherical Instruments Inc. Compact Optical Profiling System (C-OPS) and the Seabird HyperPro II. Our results show that unattended, carefully quality-controlled, DALEC measurements provide Rrs for wavelengths less then 600 nm that match those derived from the in-water systems with no bias and a dispersion of about 8%, provided that the appropriate technique is used to quantify the contribution of sky light reflection to the measured signal.

Skip to toolbar