-
Farah posted an update 7 months, 1 week ago
Representative pathways associated with the glutathione metabolism, lipopolysaccharide biosynthesis, and amino acid metabolism (valine, leucine and isoleucine degradation) were enriched in MAP, MSAP, and SAP, respectively.
The study shows a potential association of gut microbiome composition and function to the progression of AP severity.
The study shows a potential association of gut microbiome composition and function to the progression of AP severity.This retrospective study evaluated stored nasopharyngeal swab samples from Japanese patients with influenza-like illness during the 2019/2020 season. We aimed to determine whether COVID-19 had spread in the community before the first confirmed case. The period of influenza season during 2019/2020 in Nagasaki was shorter than in previous influenza seasons. When the first COVID-19 case was reported in Nagasaki prefecture, the number of influenza cases were very low. No positive results for SARS-CoV-2 were detected in 182 samples that were obtained from adult outpatients. see more Our results revealed no large-scale spread of COVID-19 in the community before the first confirmed case.High-risk human papillomavirus (HPV) is the most frequent sexually transmitted agent worldwide and is responsible for approximately 5% of human cancers. Identifying novel biomarkers and therapeutic targets for these malignancies requires a deeper understanding of the mechanisms involved in the progression of HPV-induced cancers. Long non-coding RNAs (lncRNAs) are crucial in the regulation of biological processes. Importantly, these molecules are key players in the progression of multiple malignancies and are able to regulate the development of the different hallmarks of cancer. This review highlights the action of lncRNAs in the regulation of cellular processes leading to the typical hallmarks of cancer. The regulation of lncRNAs by HPV oncogenes, their targets and also their mechanisms of action are also discussed, in the context of HPV-induced malignancies. Overall, accumulating data indicates that lncRNAs may have a significant potential to become useful tools for clinical practice as disease biomarkers or therapy targets.Lung cancer is the leading cause of cancer death worldwide, with non-small cell lung cancer (NSCLC) representing its most commonly diagnosed sub-type. Despite the significant improvements in lung cancer biomarkers knowledge, accompanied by substantial technological advances in molecular tumor profiling, a considerable fraction (up to 30 %) of advanced NSCLC patient presents with major testing challenges or tissue unavailability for molecular analysis. In this context, liquid biopsy is on the rise, currently gaining considerable interest within the molecular pathology and oncology community. Molecular profiling of liquid biopsy specimens using next generation molecular biology methodologies is a rapidly evolving field with promising applications not exclusively limited to advanced stages but also more recently expanding to early stages cancer patients. Here, we offer an overview of some of the most consolidated and emerging applications of next generation sequencing technologies for liquid biopsy testing in NSCLC.High-throughput RNA sequencing has enabled the extensive detection of circular RNAs (circRNAs) in eukaryotic organisms. However, most circRNAs are derived from exonic regions and possess sequences that are highly overlapped to their cognate linear mRNAs, which makes the reconstruction of the internal structure and full-length circular transcripts a challenging aspect in circRNA studies. To solve this problem, we provide a step-by-step protocol for the full-length reconstruction of circRNAs using CIRI-full and CIRI-long in Illumina and Nanopore RNA-seq libraries. By combining experimental and computational methods, we are able to effectively characterize the full-length landscape of circRNAs, which provide an important basis to explore the biogenesis and biological function of circRNAs.Carotenoids and triacylglycerols from yeasts are important bioproducts that can be utilized for the nutraceutical and biodiesel industries respectively. Rhodotorula diobovata is capable of producing these bioproducts under varied culture conditions. These productions have been linked to the early stationary growth phase and their levels only start to decline at the late stationary phase when carbon becomes limiting. While nitrogen-limitation influences the onset of lipogenesis, continuous synthesis and accumulation of neutral lipids (triacylglycerides) may be dependent on other culture conditions such as aeration. Proteomic analyses were conducted to enhance our understanding of changes in gene product expression under culture conditions with nitrogen-limitation, coupled with insufficient aeration, and revealed a correlation between the upregulation of proteins in the lipolysis pathways and the reduced synthesis of fatty acids at the early stationary phase. Upregulation of glycolytic pathway enzymes suggested that glucose was quickly converted into pyruvate and then acetyl-CoA. However, acetyl-CoA flux favoured carotenoids biosynthesis over fatty acid synthesis, as cells transitioned into the stationary phase. This work provides insights into how culture conditions influence gene product expression levels, pathway utilization, and end-product synthesis patterns.
To compare the inference regarding the effectiveness of the various non-pharmaceutical interventions (NPIs) for COVID-19 obtained from different SIR models.
We explored two models developed by Imperial College that considered only NPIs without accounting for mobility (model 1) or only mobility (model 2), and a model accounting for the combination of mobility and NPIs (model 3). Imperial College applied models 1 and 2 to 11 European countries and to the USA, respectively. We applied these models to 14 European countries (original 11 plus another 3), over two different time horizons.
While model 1 found that lockdown was the most effective measure in the original 11 countries, model 2 showed that lockdown had little or no benefit as it was typically introduced at a point when the time-varying reproduction number was already very low. Model 3 found that the simple banning of public events was beneficial, while lockdown had no consistent impact. Based on Bayesian metrics, model 2 was better supported by the data than either model 1 or model 3 for both time horizons.