-
Bennedsen posted an update 7 months ago
By training the proposed network in an end-to-end manner, all learnable modules can be automatically explored to well characterize the representations of both JPEG artifacts and image content. Experiments on synthetic and real-world datasets show that our method is able to generate competitive or even better deblocking results, compared with state-of-the-art methods both quantitatively and qualitatively.To alleviate the sparsity issue, many recommender systems have been proposed to consider the review text as the auxiliary information to improve the recommendation quality. Despite success, they only use the ratings as the ground truth for error backpropagation. However, the rating information can only indicate the users’ overall preference for the items, while the review text contains rich information about the users’ preferences and the attributes of the items. In real life, reviews with the same rating may have completely opposite semantic information. If only the ratings are used for error backpropagation, the latent factors of these reviews will tend to be consistent, resulting in the loss of a large amount of review information. In this article, we propose a novel deep model termed deep rating and review neural network (DRRNN) for recommendation. Specifically, compared with the existing models that adopt the review text as the auxiliary information, DRRNN additionally considers both the target rating and target review of the given user-item pair as ground truth for error backpropagation in the training stage. Therefore, we can keep more semantic information of the reviews while making rating predictions. Extensive experiments on four publicly available datasets demonstrate the effectiveness of the proposed DRRNN model in terms of rating prediction.Based on extensive applications of the time-variant quadratic programming with equality and inequality constraints (TVQPEI) problem and the effectiveness of the zeroing neural network (ZNN) to address time-variant problems, this article proposes a novel finite-time ZNN (FT-ZNN) model with a combined activation function, aimed at providing a superior efficient neurodynamic method to solve the TVQPEI problem. The remarkable properties of the FT-ZNN model are faster finite-time convergence and preferable robustness, which are analyzed in detail, where in the case of the robustness discussion, two kinds of noises (i.e., bounded constant noise and bounded time-variant noise) are taken into account. Moreover, the proposed several theorems all compute the convergent time of the nondisturbed FT-ZNN model and the disturbed FT-ZNN model approaching to the upper bound of residual error. Besides, to enhance the performance of the FT-ZNN model, a fuzzy finite-time ZNN (FFT-ZNN), which possesses a fuzzy parameter, is further presented for solving the TVQPEI problem. A simulative example about the FT-ZNN and FFT-ZNN models solving the TVQPEI problem is given, and the experimental results expectably conform to the theoretical analysis. In addition, the designed FT-ZNN model is effectually applied to the repetitive motion of the three-link redundant robot and image fusion to show its potential practical value.We propose a complete hardware-based architecture of multilayer neural networks (MNNs), including electronic synapses, neurons, and periphery circuitry to implement supervised learning (SL) algorithm of extended remote supervised method (ReSuMe). In this system, complementary (a pair of n- and p-type) memtransistors (C-MTs) are used as an electrical synapse. By applying the learning rule of spike-timing-dependent plasticity (STDP) to the memtransistor connecting presynaptic neuron to the output one whereas the contrary anti-STDP rule to the other memtransistor connecting presynaptic neuron to the teacher one, extended ReSuMe with multiple layers is realized without the usage of those complicated supervising modules in previous approaches. Cefodizime mouse In this way, both the C-MT-based chip area and power consumption of the learning circuit for weight updating operation are drastically decreased comparing with the conventional single memtransistor (S-MT)-based designs. Two typical benchmarks, the linearly nonseparable benchmark xor problem and Mixed National Institute of Standards and Technology database (MNIST) recognition have been successfully tackled using the proposed MNN system while impact of the nonideal factors of realistic devices has been evaluated.Co-location pattern mining refers to discovering neighboring relationships of spatial features distributed in geographic space. With the rapid growth of spatial datasets, the usefulness of co-location patterns is strongly limited by the large number of discovered patterns containing multiple redundancies. To address this problem, in this article, we propose a novel approach for discovering the super participation index-closed (SPI-closed) co-location patterns which are a newly proposed lossless condensed representation of co-location patterns by considering distributions of the spatial instances. In the proposed approach, first, a linear-time method is designed to generate complete and correct neighboring cliques using extended neighboring relationships. Based on these cliques, a hash structure is then constructed to store the distributions of the co-location patterns in a condensed way. Finally, using this hash structure, the SPI-closed co-location patterns (SCPs) are efficiently discovered even if the prevalence threshold is changed, while similar approaches have to restart their mining processes. To confirm the efficiency of the proposed method, we compared its performance with similar approaches in the literature on multiple real and synthetic spatial datasets. The experiments confirm that our new approach is more efficient, effective, and flexible than similar approaches.In this article, we mainly consider the existence of solutions and global Mittag-Leffler stability of delayed fractional-order coupled reaction-diffusion neural networks without strong connectedness. Using the Leary-Schauder’s fixed point theorem and the Lyapunov method, some criteria for the existence of solutions and global Mittag-Leffler stability are given. Finally, the correctness of the theory is verified by a numerical example.