-
Meadows posted an update 7 months, 2 weeks ago
For K-edge spectra, SIL is the more efficient scheme by an average factor of 7.2.Higher-order structure governs function for many RNAs. However, discerning this structure for large RNA molecules in solution is an unresolved challenge. Here, we present SHAPE-JuMP (selective 2′-hydroxyl acylation analyzed by primer extension and juxtaposed merged pairs) to interrogate through-space RNA tertiary interactions. A bifunctional small molecule is used to chemically link proximal nucleotides in an RNA structure. The RNA cross-link site is then encoded into complementary DNA (cDNA) in a single, direct step using an engineered reverse transcriptase that “jumps” across cross-linked nucleotides. The resulting cDNAs contain a deletion relative to the native RNA sequence, which can be detected by sequencing, that indicates the sites of cross-linked nucleotides. SHAPE-JuMP measures RNA tertiary structure proximity concisely across large RNA molecules at nanometer resolution. SHAPE-JuMP is especially effective at measuring interactions in multihelix junctions and loop-to-helix packing, enables modeling of the global fold for RNAs up to several hundred nucleotides in length, facilitates ranking of structural models by consistency with through-space restraints, and is poised to enable solution-phase structural interrogation and modeling of complex RNAs.The free-standing Ni-Al2O3 ensemble derived from NiAl-layered double hydroxides (NiAl-LDHs) grown onto a Ni-foam has been developed for the exothermic gas-phase acetone hydrogenation to isopropanol. This approach works effectively and efficiently to achieve a unique combination of high activity/selectivity and enhanced heat/mass transfer stemmed from the Ni-foam. The outstanding catalyst is obtained by direct reduction of the un-calcined NiAl-LDH/Ni-foam, with a high turnover frequency of 0.90 s-1, being capable of converting 90.8% acetone into isopropanol with almost 100% selectivity under stoichiometric H2/acetone molar ratio, atmospheric pressure at 80 °C, and a WHSVacetone of 10 h-1. The catalyst derivation using the un-calcined NiAl-LDH/Ni-foam enables the Ni nanoparticles to be intertwined with Al2O3 to form a large Ni-Al2O3 interface, without interruption of impurities such as irreducible NiO (in the case of calcined NiAl-LDH/Ni-foam samples), which markedly improves the strong acetone adsorption next to the Ni0 hydrogenation sites, thereby leading to a dramatic improvement of catalyst activity.A 3D printed flexible tactile sensor with graphene-polydimethylsiloxane (PDMS) microspheres for microstructure perception is presented. The structure of the tactile sensor is inspired by the texture of the human finger and is designed to enable the detection of various levels of surface roughness via the processing of tactile signals. The tactile sensor with a unique graphene-PDMS microsphere structure shows excellent comprehensive mechanical properties, including a robust stretching ability (elongation at break of the sensing layer is 70%), excellent sensing ability (short response time of 60 ms), high sensitivity (sensitivity up to 2.4 kPa-1), and cycle stability (over 2000 loading cycles). In addition, such versatility and sensitivity allow the electronic skin not only to accurately monitor pressure but also to distinguish various surface topographies with microscale differences, and to detect the action of an air fluid.In this study, β-amino esters, prepared by the aza-Michael addition of an amine to an acrylate moiety, are investigated as building blocks for the formation of dynamic covalent networks. While such amino esters are usually considered as thermally nondynamic adducts, the kinetic model studies presented here show that dynamic covalent exchange occurs via both dynamic aza-Michael reaction and catalyst-free transesterification. This knowledge is transferred to create β-amino ester-based covalent adaptable networks (CANs) with coexisting dissociative and associative covalent dynamic exchange reactions. The ease, robustness, and versatility of this chemistry are demonstrated by using a variety of readily available multifunctional acrylates and amines. The presented CANs are reprocessed via either a dynamic aza-Michael reaction or a catalyst-free transesterification in the presence of hydroxyl moieties. IACS-10759 manufacturer This results in reprocessable, densely cross-linked materials with a glass transition temperature (Tg) ranging from -60 to 90 °C. Moreover, even for the low Tg materials, a high creep resistance was demonstrated at elevated temperatures up to 80 °C. When additional β-hydroxyl group-containing building blocks are applied during the network design, an enhanced neighboring group participation effect allows reprocessing of materials up to 10 times at 150 °C within 30 min while maintaining their material properties.Biomolecular devices based on photo-responsive proteins have been widely proposed for medical, electrical, and energy storage and production applications. Also, bacteriorhodopsin (bR) has been extensively applied in such prospective devices as a robust photo addressable proton pump. As it is a membrane protein, in principle, it should function most efficiently when reconstituted into a fully fluid lipid bilayer, but in many model membranes, lateral fluidity of the membrane and protein is sacrificed for electrochemical addressability because of the need for an electroactive surface. Here, we reported a biomolecular photoactive device based on light-activated proton pump, bR, reconstituted into highly fluidic microcavity-supported lipid bilayers (MSLBs) on functionalized gold and polydimethylsiloxane cavity array substrates. The integrity of reconstituted bR at the MSLBs along with the lipid bilayer formation was evaluated by fluorescence lifetime correlation spectroscopy, yielding a protein lateral diffusion c-protein-coupled receptors on these versatile biomimetic substrates.Density functional theory (DFT) has been employed in predicting the enantioselectivity of the aldol reaction between acetone and p-nitrobenzaldehyde catalyzed by proline and its derivatives Me2bdc-Pro (bdc = 1,4-benzenedicarboxylate) and Me2bpdc-Pro (bpdc = 4,4′-biphenyldicarboxylate). For each catalyst, our computationally predicted values at the M062X/6-31+G(d) level of theory with the SMD solvent model are in excellent agreement with experimental results reported in the literature. Electron-donating and electron-withdrawing groups (viz., SO3-, NMe2, SO3H, and NMe3+) were installed at the C4 position of the proline-based catalysts to study the impact of electrostatic effects on stereoselectivity. The electron-donating groups decrease and even invert the enantioselectivity, while the electron-withdrawing ones increase it. Enantiomeric excesses in the range of 49-71 and 59-68% are predicted for Me2bdc-Pro and Me2bpdc-Pro catalysts with the electron-withdrawing SO3H and NMe3+ installed respectively, values much higher than those of the corresponding unmodified catalysts.