-
Holmes posted an update 9 months, 1 week ago
When the Y. lipolytica A-101 was cultivated at optimized pH (5.0) using biofuel waste as a medium, the protein concentration was increased to 8.28-a 44% enhancement as compared to the original (3.65). This study has thus demonstrated a beneficial way to cultivate Y. lipolytica A-101 on biofuel waste for enhanced production of single cell protein and amino acids for use in human diet and in animal feed.The craving for multiphase materials with adjustable properties for mammalian cell encapsulation persists despite intensive research on 3D cell culture and tissue engineering. This interest is incited by the complex interaction between cells and different materials, various manufacturing methods, cell chip applications, and the aspiration to abolish animal experiments. This study aims to show the feasibility of preparing a stable multiphase material for prolonged mammalian cell embedment and 3D cell culture. The material comprises silica as the solid phase, cell culture medium with serum as the main liquid phase and air as the gas phase. The silica sol-cell culture medium-serum mixture was foamed, and it turned into a stable foamed hydrogel. The stability, flow properties and foaming parameters were studied by rheological and surface tension measurements. The viability of embedded cells was studied by measuring the metabolic activity at different time points. Their sensitivity to the surrounding conditions was compared to cells grown in monolayers by exposing them to a toxic compound. A stable foamed hydrogel with cell culture medium as the main liquid phase was prepared. Based on oscillatory measurements, the foamed hydrogel stays stable for at least 6-7 weeks and the embedded mammalian cells remain viable for the same time period. Appropriate surface tension and viscosity were crucial for an at least twofold volume increase by foaming, which is necessary for the mammalian cells to survive and proliferate. A test with a toxic compound reveals a difference in the sensitivity of cells in monolayer cultures versus embedded cells.Increased concentrations of phosphorus (P) in riverine systems lead to eutrophication and can contribute to other environmental effects. Chalk rivers are known to be particularly sensitive to elevated P levels. We used high-frequency (daily) automatic water sampling at five distinct locations in the upper River Itchen (Hampshire, UK) between May 2016 and June 2017 to identify the main P species (including filterable reactive phosphorus, total filterable phosphorus, total phosphorus and total particulate phosphorus) present and how these varied temporally. Our filterable reactive phosphorus (considered the biologically available fraction) data were compared with the available Environment Agency total reactive phosphorus (TRP) values over the same sampling period. Over the trial, the profiles of the P fractions were complex; the major fraction was total particulate phosphorus with the mean percentage value ranging between 69 and 82% of the total P present. Sources were likely to be attributable to wash off from agricultural activities. At all sites, the FRP and Environment Agency TRP mean concentrations over the study were comparable. However, there were a number of extended time periods (1 to 2 weeks) where the mean FRP concentration (e.g. Firsocostat solubility dmso 0.62 mg L-1) exceeded the existing regulatory values (giving a poor ecological status) for this type of river. Often, these exceedances were missed by the limited regulatory monitoring procedures undertaken by the Environment Agency. There is evidence that these spikes of elevated concentrations of P may have a biological impact on benthic invertebrate (e.g. blue-winged olive mayfly) communities that exist in these ecologically sensitive chalk streams. Further research is required to assess the ecological impact of P and how this might have implications for the development of future environmental regulations.PURPOSE Curcumin (CUR), an antioxidant with p-glycoprotein inhibiting activity may be encapsulated with gemcitabine (GEM) as nanosuspension to enhance its anticancer potentiality synergistically. METHODS Folate conjugated single (CUR/GEM) and dual (CUR + GEM) drug-loaded nanoformulations were prepared and evaluated for P-glycoprotein-1 (pgy-1) gene resistance, followed by in vitro cellular uptake and cytotoxicity assay in cells. The in vivo biodistribution and scintigraphic imaging was done after radiolabeling the nanoparticles with 99mTechnetium (99mTc). The tumor inhibition study was conducted in nude mice bearing MDA-MB-231 xenografts. RESULTS The folate conjugated dual drug formulations (FCGNPs) gave better results in suppressing the pgy-1 gene and also showed higher cellular uptake, cytotoxicity, apoptosis, and cell cycle arrest. The radiolabeled nanoformulations were highly stable and FCGNPs showed higher accumulation in the MDA-MB-231 tumor region than folate unconjugated dual drug NPs (CGNPs) as evidenced by scintigraphic imaging and biodistribution studies. The in vivo therapeutic efficacy of FCGNPs was higher compared to unconjugated and respective single-drug formulations. CONCLUSION Two drugs in one platform lower breast adenocarcinoma by lowering drug resistance and improving cytotoxic effects.Flap motility sign has been recently described as an aid to guide the surgeons regarding the feasibility of continuing safe phacoemulsification in the presence of peripheral extension of anterior capsular tears. While this sign may seem to provide a safety assurance to the operating surgeon who at such times may be under considerable stress, we believe, this sign may not always hold true and this hypothesis needs further investigation. We present a case in which an everted and fluttering flap was noted in the presence of a complete posterior extension of the anterior capsular tear, thus refuting the accuracy of flap motility sign.The objective of this study was to evaluate the clinical effects of repeated subgingival debridement by air polishing during supportive periodontal therapy. A double-blind, randomized controlled trial of 6 months in duration was conducted on 19 recall patients who were previously treated for chronic periodontitis. Three sites with probing pocket depths (PPD) of 4-9 mm in each of the patients were randomly assigned to the following treatments Glycine powder/air polishing every 30 days (group 1), glycine powder/air polishing at baseline and on day 90 (group 2), or water irrigation every 30 days (group 3). Clinical parameters were recorded and microbiological sampling was performed at 0, 90, and 180 days post-treatment. Subgingival samples were analyzed using real-time PCR methods for Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Between baseline and 90 days, group 1 showed significantly more PPD reduction compared to group 3 and no significant differences with group 2. Between baseline and 180 days, group 1 displayed a significant increase in clinical attachment level compared with group 3.