-
Patel posted an update 9 months ago
The adsorption aptitude of ZnO-NPs towards EBT dye was systematically explored in real wastewater samples and interference study of inorganic metallic salts was also performed. The toxicity estimations of the treated dye solutions were made using floral and fungal activities, to ascertain their non-toxic nature before releasing into the environment. These outcomes have supported the immense potential of ZnO-NPs towards the removal of EBT in a cost effective manner.With the rapid growth of population and industrialization, the energy crisis and environmental pollution as two main difficulties urgently need to be solved nowadays. The development and utilization of nuclear energy is of great significance for solving energy support, national security and environmental protection. As the raw material of nuclear energy, a lot of uranium in seawater provide a guarantee for the sustainable and green development of nuclear power plants. Recently, various new carbon-based materials (e.g., carbon nanofibers, multiwalled carbon nanotube, graphene) have been attracted widely intense interest in extraction of uranium from seawater due to large specific surface area, excellent acid-base resistance, high adsorption performance, environmental friendly and low cost. Thus, the systematic reviews concerning the extraction of uranium from seawater on various carbon-based materials were highly desirable. In this review, the extraction methods of uranium from seawater, including electrochemical, photocatalytic and adsorption methods are briefly introduced. click here Then the application and mechanism of four generation carbon-based materials on the extraction of uranium from seawater are systematically reviewed in details. Finally, the current challenges and future trends of uranium extraction from seawaters are proposed. This review provides the guideline for designing carbon-based materials with high adsorption capacity and exceptional selectivity for U(VI) extraction from seawater.Herein, we demonstrate, for the first time, that covalent organic frameworks (COFs) can be efficient adsorbents for the screening of pharmaceuticals in real water samples, obtaining highly representative data on their occurrence and avoiding the cost of carrying high volume samples and tedious and costly clean-up and preconcentration steps. Of the 23 pharmaceuticals found present in the water samples from the Tagus river estuary using state-of-the-art solid-phase extraction (SPE), 22 were also detected (adsorbed and recovered for analysis) using a COF as the adsorbent material with adsorption efficiency of over 80% for nearly all compounds. In specific cases, acidification of the water samples was identified to lead to a dramatic loss of adsorption efficiency, underlining the effect of sample pre-treatment on the results. The COF efficiently adsorbed (>80%) 19 pharmaceuticals without acid treatment of the sample, highlighting the potential of this class of materials for representative in situ passive adsorption of pharmaceuticals, making this material suitable for being used in water monitoring programs as a simple and cost-efficient sample preparation procedure. In the case of α-hydroxyalprazolam and diclofenac, the COF outperformed the SPE procedure in the recovery efficiency. Although further efforts should be made in tailoring the desorption of the pharmaceuticals from the COF by using different solvents or solvent mixtures, we propose COFs as convenient adsorbent for broad-scope screening and as an efficient adsorbent material to target specific classes of pharmaceuticals. To the best of our knowledge, this is the first study on the use of COFs for contaminant screening in real, naturally contaminated water samples.The residual ozone played an important role in enhancing the organics removal by stimulate subsequent biological processes. However, how the residual ozone affects the biological process is not well studied. In this work, a pilot scale integrated O3-BAF, ordinary BAF and separated O3-BAF were compared in advanced treatment of real bio-treated petrochemical wastewater. Results showed that residual ozone with 0.05-0.10 mg L-1 in the BAF demonstrated relatively high chemical oxygen demand (COD) removal efficiency of 48.4%, which was 1.5-fold higher than that obtained by separated O3-BAF and 3-fold higher than that obtained by ordinary BAF. The stimulative effect of low dosage of O3 on biological treatment additionally donated 33.9% of the COD removal in the BAF. The COD removal amount per dosage of ozone reached 5.30 mg-COD/mg-O3. The biofilm thickness in the integrated O3-BAF was reduced by 30-50% while the dehydrogenase activity (DHA) was improved by 500%, indicating the stimulate effect on the bioactivity. Additionally, Illumina HiSeq sequencing of 16S rRNA gene amplicons demonstrated significant microbial diversity decreasing. Specially, Gemmatimonadetes and Bacteroidetes are the dominate microorganism in the integrated O3-BAF, having a positive correlation with the proper residual ozone, and increased by 5.4% and 4.2% in comparison with the separated O3-BAF, respectively. The residual ozone higher than 0.22 mg L-1 showed inhibition effect on the bioactivity. In summary, the control of residual ozone introduced to BAF was crucial for stimulative effects and manager the microbial community in the integrated O3-BAF, which still need further detail research.A new integrated source-specific risk model and site-specific blood lead levels (BLLs) of 0-6 children were introduced to comprehensive understand the status of the toxic metals in soil-dust-plant total environment from a Coal-Gas industrial city, NW China. 144 samples were collected and ten toxic metals (As, Ba, Co, Cr, Cu, Mn, Ni, Sr, Pb, and Zn) were screened by XRF and ICP-MS. It was found that the occurrences of toxic metals deferred in the different medium, such as Co, Cu, Pb, and Zn observed the trend of accumulating in soil and plant compared to clustered distributions of Cr, Mn and Ni preferred to accumulate in dust. However, few bioaccumulations observed in Ulmus pumila L. Toxic metals distributions in majority of sites influenced by coal combustion mixed sources and industrial activities posed the high integrated ecological risks and caused significant non-carcinogenic and carcinogenic integrated risks for local 0-6 children identified by new integrated source-specific risk model, especially observed in the priority contaminants Co and Pb.