-
Rossen posted an update 9 months, 1 week ago
we will present future strategies of metal halide structural unit modulation for solid-state light emissions. We hope this Account will provide new insights for designing metal halide materials from the viewpoint of the modulation of the basic building blocks and inspire future studies of advanced metal halide materials for solid-state light emitting applications.Obesity is a primary risk factor for type 2 diabetes, cardiovascular diseases, cancer, and other chronic diseases. Current antiobesity medications need frequent administration and show limited efficacy with severe side effects. Herein, browning agent rosiglitazone (Rsg) and antioxidant manganese tetroxide nanoparticles (MnNPs, around 250 nm) are integrated into electrospun short fibers (SF@Rsg-Mn) with a 1.5 μm width and a 20 μm length. Upon injection into inguinal adipose tissues, SF@Rsg-Mn are well retained in the local depots to sustainably release Rsg in 30 days for adipose tissue browning, while MnNPs on the fiber surface continuously scavenge adipose reactive oxygen species (ROS) for an extended period of time. Synergistic inhibition of fat accumulation through ROS scavenging and white adipocyte browning has been demonstrated for the first time, and the optimal synergistic ratio of Rsg and MnNPs is determined to be 1/14 via combination index examination. SF@Rsg-Mn inhibit lipid accumulation through downregulation of adipogenic gene PPARγ while promoting energy expenditure through upregulation of brown-specific gene UCP1 and mitochondrial function gene COX7A1. selleck inhibitor In a diet-induced obesity mouse model, a single injection of SF@Rsg-Mn into inguinal adipose tissues has accomplished a synergistic effect on body weight loss, fat reduction, glucose, and lipid metabolic improvement while minimizing adverse effects on other tissues, thereby paving the way to efficacious, safe, and practical treatment of obesity.Although the traditional Cu-poor architecture addresses many limitations for Cu2ZnSn(S,Se)4 solar cells, its further development still encounters a bottleneck in terms of efficiency, primarily arising from the inferior charge transport within the quasineutral region and enlarged recombination at back contact. On the contrary, the electrical benign kesterite compound with higher Cu content may compensate for these shortages, but it will degrade device performance more pronouncedly at front contact because of the Fermi level pinning and more electric shunts. Based on the electric disparities on their independent side, in this work, we propose a new status of Cu component by exploring a large grain/fine grain/large grain trilayer architecture with higher Cu content near back contact and lower Cu content near front contact. The benefits of this bottom Cu-higher strategy are that it imposes a concentration gradient to drive carrier diffusion toward front contact and decreases the valence band edge offset in the rear of the device to aid in hole extraction. Also, it maintains the Cu-poor architecture at the near surface to facilitate hole quasi-Fermi level splitting. In return, the local Cu component engineering-mediated electric advances contribute to the highest efficiency of 12.54% for kesterite solar cells using amine-thiol solution systems so far.Highly sensitive capacitive-type pressure sensor has been achieved by fabricating reliefs on solution-processable hydrogel electrodes. Hybrid PVA/PANI hydrogels (PVA, poly(vinyl alcohol); PANI, polyaniline) with a fully physically cross-linked binary network are selected as the electrodes of the pressure sensors. On the basis of the solution processability, reliefs are fabricated on the surface of PVA/PANI hydrogel electrodes by a template method. The gauge factor (GF) is enhanced by introducing reliefs and regulated by controlling the composition and relief dimension of hydrogel electrodes. The optimized pressure sensor containing reliefs achieves the highest GF of 7.70 kPa-1 and a sensing range of 0-7.4 kPa. Furthermore, the freezing and drying problems of the hydrogel sensors are overcome by introducing a binary solvent of water/glycerol and the pressure sensing ability at -18 °C has been achieved. Finally, monitoring of various pressures in daily life, such as joint bending, blowing, and brush writing, is demonstrated using such pressure sensors.The significant mismatch of mechanical properties between the implanted medical device and biological tissue is prone to cause wear and even perforation. In addition, the limited biocompatibility and nondegradability of commercial Nitinol-based occlusion devices can easily lead to other serious complications, such as allergy and corrosion. The present study aims to develop a 4D printed patient-specific absorbable left atrial appendage occluder (LAAO) that can match the deformation of left atrial appendage (LAA) tissue to reduce complications. The desirable bioinspired network is explored by iterative optimization to mimic the stress-strain curve of LAA tissue and LAAOs are designed based on the optimal network. In vitro degradation tests are carried out to evaluate the effects of degradation on mechanical properties. In addition, 48 weeks of long-term subcutaneous implantation of the occluder shows favorable biocompatibility, and the 20-cycle compression test demonstrates outstanding durability of LAAO. Besides, a rapid, complete, and remote-controlled 4D transformation process of LAAO is achieved under the trigger of the magnetic field. The deployment of the LAAO in an isolated swine heart initially exhibits its feasibility for transcatheter LAA occlusion. To the best of our knowledge, this is the first demonstration of the 4D printed LAA occlusion device. It is worth noting that the bioinspired design concept is not only applicable to occlusion devices, but also to many other implantable medical devices, which is conducive to reducing complications, and a broad range of appealing application prospects can be foreseen.The contraction behavior of spider dragline silk upon water exposure has drawn particular interest in developing humidity-responsive smart materials. We report herein that the spider dragline silk yarns with moderate twists can generate much improved lengthwise contraction of 60% or an isometric stress of 11 MPa when wetted by water. Upon the removal of the absorbed water, the dried and contracted spider silk yarns showed programmable contractile actuations. These yarns can be plastically stretched to any specified lengths between the fully contracted state and the state before supercontraction and return to the fully contracted state when wetted. Moreover, the generated isometric stress of these yarns is also programmable, depending on the stretching ratio. The mechanism of the programmable reversible contraction is based on the plastic mechanical property of the dried and contracted spider silk yarns, which can be explained by the variation of the hydrogen bonds and the secondary structures of the proteins in spider dragline silk.