-
Joyner posted an update 5 months ago
This infusion given prior to context preexposure but not training abolished retention test freezing, with no difference between MK-801-infused rats and non-associative controls preexposed to an alternative context (pooled across drug). These results demonstrate a role of prefrontal NMDA-receptor plasticity in the acquisition and/or consolidation of incidental context learning (i.e., encoded in the absence of reinforcement). In contrast, this plasticity is not required for context retrieval, or acquisition, expression, or consolidation of a context-shock association during immediate-shock training in the CPFE. These experiments add to a growing body of work implicating the mPFC in Pavlovian contextual fear conditioning processes in rodents.For over two decades, the prime objective of the chemical biology community studying G-quadruplexes (G4s) has been to use chemicals to interact with and stabilize G4s in cells to obtain mechanistic interpretations. This strategy has been undoubtedly successful, as demonstrated by recent advances. However, these insights have also led to a fundamental rethinking of G4-targeting strategies due to the prevalence of G4s in the human genome, transcriptome, and ncRNAome (collectively referred to as the G4ome), and their involvement in human diseases, should we continue developing G4-stabilizing ligands or should we invest in designing molecular tools to unfold G4s? Here, we first focus on how, when, and where G4s fold in cells; then, we describe the enzymatic systems that have evolved to counteract G4 folding and how they have been used as tools to manipulate G4s in cells; finally, we present strategies currently being implemented to devise new molecular G4 unwinding agents.Major cerebral vessels have been proposed as a target of defective mitochondrial metabolism in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Cerebral angiographic techniques are not routinely performed in MELAS patients. A systematic literature review was performed to identify studies describing major vessel caliber alterations in MELAS. Twenty-three studies reporting on 46 MELAS patients were included. Alterations in major caliber vessels were present in 59% (27/46) of patients. Dilation occurred in 37% (17/46) of patients, and in 88% (15/17) of them during a stroke-like episode (SLE). Stenosis was reported in 24% (11/46) of patients 36% (4/11) related to an SLE and 64% (7/11) to dissections or degenerative changes. During an SLE, identification of intracranial vessels dilation or stenosis could be a selection tool for new treatment protocols. Outside SLE, identification of major cerebral vessels dissections and degenerative changes may help to prevent subsequent complications.The myeloid tumor suppressor KMT2C is recurrently deleted in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), particularly therapy-related MDS/AML (t-MDS/t-AML), as part of larger chromosome 7 deletions. Here, we show that KMT2C deletions convey a selective advantage to hematopoietic stem cells (HSCs) after chemotherapy treatment that may precipitate t-MDS/t-AML. Kmt2c deletions markedly enhance murine HSC self-renewal capacity without altering proliferation rates. Haploid Kmt2c deletions convey a selective advantage only when HSCs are driven into cycle by a strong proliferative stimulus, such as chemotherapy. check details Cycling Kmt2c-deficient HSCs fail to differentiate appropriately, particularly in response to interleukin-1. Kmt2c deletions mitigate histone methylation/acetylation changes that accrue as HSCs cycle after chemotherapy, and they impair enhancer recruitment during HSC differentiation. These findings help explain why Kmt2c deletions are more common in t-MDS/t-AML than in de novo AML or clonal hematopoiesis they selectively protect cycling HSCs from differentiation without inducing HSC proliferation themselves.AMP-activated protein kinase (AMPK) is an energy sensor that plays roles in multiple biological processes beyond metabolism. Several studies have suggested that AMPK is involved in the DNA damage response (DDR), but the mechanisms remain unclear. Herein, we demonstrate that AMPK promotes classic non-homologous end joining (c-NHEJ) in double-strand break (DSB) repair through recruiting a key chromatin-based mediator named p53-binding protein 1 (53BP1), which facilitates the end joining of distal DNA ends during DDR. We find that the interaction of AMPK and 53BP1 spatially occurs under DSB stress. In the context of DSBs, AMPK directly phosphorylates 53BP1 at Ser1317 and promotes 53BP1 recruitment during DDR for an efficient c-NHEJ, thus maintaining genomic stability and diversity of the immune repertoire. Taken together, our study demonstrates that AMPK is a regulator of 53BP1 and controls c-NHEJ choice by phospho-regulation.Mossy cells (MCs) are a unique group of excitatory neurons in the hippocampus, a brain region important for emotion, learning, and memory. Due to the lack of a reliable method to isolate MCs from other cell types, how MCs integrate neural information and convey it to their synaptic targets for engaging a specific function are still unknown. Here, we report that MCs control the efficacy of spatial memory retrieval by synapsing directly onto local somatostatin-expressing (SST) cells. MC-SST synaptic transmission undergoes long-term potentiation (LTP), requiring Gria2-lacking Ca2+-permeable anti-α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor (Ca2+AR). A long noncoding RNA (Gria2I) is associated with Gria2 transcriptional repressors in SST cells. Silencing Gria2I induces Gria2 transcription, blocks LTP of MCs-SST synaptic transmission, and reduces the efficacy of memory retrieval. Thus, MCs directly and functionally innervate local SST neurons, and this innervation controls the efficacy of spatial memory retrieval by Gria2I inhibition of Gria2 transcription.The intestine is under constant exposure to chemicals, antigens, and microorganisms from the external environment. Apical aspects of transporting epithelial cells (enterocytes) form a brush-border membrane (BBM), shaped by packed microvilli coated with a dense glycocalyx. We present evidence showing that the glycocalyx forms an epithelial barrier that prevents exogenous molecules and live bacteria from gaining access to BBM. We use a multi-omics approach to investigate the function and regulation of membrane mucins exposed on the BBM during postnatal development of the mouse small intestine. Muc17 is identified as a major membrane mucin in the glycocalyx that is specifically upregulated by IL-22 as part of an epithelial defense repertoire during weaning. High levels of IL-22 at time of weaning reprogram neonatal postmitotic progenitor enterocytes to differentiate into Muc17-expressing enterocytes, as found in the adult intestine during homeostasis. Our findings propose a role for Muc17 in epithelial barrier function in the small intestine.