Activity

  • Dalrymple posted an update 7 months, 1 week ago

    The precursor tryptophan (TRP), and its metabolites kynurenine (KYN) and serotonin (5-HT) were measured in hippocampus and cortex by HPLC. The ratios KYN/TRP and KYN/5-HT were used to estimate indoleamine 2,3-dioxygenase (IDO) activity and the balance of both metabolic pathways, respectively. CBD reduced the immobility time in the tail suspension test and increased sucrose preference in the LPS model, without affecting locomotion and central activity in the open-field test. CBD diminished cortical NF-ĸB activation, IL-6 levels in plasma and brain, and the increased KYN/TRP and KYN/5-HT ratios in hippocampus and cortex in the LPS model. Our results demonstrate that CBD produced antidepressant-like effects in the LPS neuroinflammatory model, associated to a reduction in the kynurenine pathway activation, IL-6 levels and NF-ĸB activation. As CBD stands out as a promising antidepressant drug, more research is needed to completely understand its mechanisms of action in depression linked to inflammation.CaV1.2 channels play a fundamental role in the regulation of vascular smooth muscle tone. The aim of the present study was to synthesize morin derivatives bearing the nitrophenyl moiety of dihydropyridine Ca2+ antagonists to increase the flavonoid vasorelaxant activity. The effects of morin and its derivatives were assessed on CaV1.2 and KCa1.1 channels, both in vitro and in silico, as well as on the contractile responses of rat aorta rings. All compounds were effective CaV1.2 channel blockers, positioning in the α1C subunit region where standard blockers bind. Among the four newly synthesized morin derivatives, the penta-acetylated morin-1 was the most efficacious Ca2+ antagonist, presenting a vasorelaxant profile superior to that of the parent compound and, contrary to morin, antagonized also the release of Ca2+ from the sarcoplasmic reticulum; surprisingly, it also stimulated KCa1.1 channel current. Computational analysis demonstrated that morin-1 bound close to the KCa1.1 channel S6 segment. In conclusion, these findings open a new avenue for the synthesis of valuable multi-functional, vasorelaxant morin derivatives capable to target several pathways underpinning the pathogenesis of hypertension.Optineurin (OPTN) is a multifunctional protein that mediates a network of cellular processes regulating membrane trafficking, inflammatory responses and autophagy. The OPTN-rich interactome includes Group I metabotropic glutamate receptors (mGluR1 and 5), members of the Gαq/11 protein receptor family. Recent evidence has shown that mGluR5, in addition to its canonical Gαq/11 protein-coupled signaling, regulates autophagic machinery via mTOR/ULK1 and GSK3β/ZBTB16 pathways in both Alzheimer’s and Huntington’s disease mouse models. Despite its potential involvement, the role of OPTN in mediating mGluR5 downstream signaling cascades remains largely unknown. Here, we employed a CRISPR/Cas9 OPTN-deficient STHdhQ7/Q7 striatal cell line and global OPTN knockout mice to investigate whether Optn gene deletion alters both mGluR5 canonical and noncanonical signaling. We find that OPTN is required for mGluR5-activated Ca2+ flux and ERK1/2 signaling following receptor activation in STHdhQ7/Q7 cells and acute hippocampal slices. Deletion of OPTN impairs both GSK3β/ZBTB16 and mTOR/ULK1 autophagic signaling in STHdhQ7/Q7 cells. Furthermore, mGluR5-dependent regulation of GSK3β/ZBTB16 and mTOR/ULK1 autophagic signaling is impaired in hippocampal slices of OPTN knockout mice. Overall, we show that the crosstalk between OPTN and mGluR5 can have major implication on receptor signaling and therefore potentially contribute to the pathophysiology of neurodegenerative diseases.More than two decades after the natural gene-silencing mechanism of RNA interference was elucidated, small interfering RNA (siRNA)-based therapeutics have finally broken into the pharmaceutical market. With three agents already approved and many others in advanced stages of the drug development pipeline, siRNA drugs are on their way to becoming a standard modality of pharmacotherapy. The majority of late-stage candidates are indicated for rare or orphan diseases, whose patients have an urgent need for novel and effective therapies. Additionally, there are agents that have the potential to meet the need of a broader population. Inclisiran, for instance, is being developed for hypercholesterolemia and has shown benefit in patients who are uncontrolled even after maximal statin therapy. This review provides a brief overview of mechanisms of siRNA action, physiological barriers to its delivery and activity, and the most common chemical modifications and delivery platforms used to overcome these barriers. selleckchem Furthermore, this review presents comprehensive profiles of the three approved siRNA drugs (patisiran, givosiran, and lumasiran) and the seven other siRNA candidates in Phase 3 clinical trials (vutrisiran, nedosiran, inclisiran, fitusiran, teprasiran, cosdosiran, and tivanisiran), summarizing their modifications and delivery strategies, disease-specific mechanisms of action, updated clinical trial status, and future outlooks.Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell.

Skip to toolbar