Activity

  • McMahan posted an update 10 months, 2 weeks ago

    The compatibility of Bupleurum chinense DC (Chaihu)-Paeonia lactiflora Pall (Baishao) is one of the most accepted herb pairs in traditional Chinese medicine (TCM) prescriptions for treating depression. However, the combination mechanisms of this herb pair for anti-depression remain unclear.

    In this study, the combined effect of Chaihu-Baishao was evaluated by the chronic unpredictable mild stress (CUMS) rat model. Secondly, network pharmacology was constructed to dissect the united mechanisms. Based on the results of network pharmacology analysis, plasma metabolomics based on ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was performed to discover the collaborative effect on metabolite regulation. Furthermore, the targets from network pharmacology and the metabolites from metabolomics were jointly analyzed to select crucial metabolism pathways by MetaScape. Finally, the key metabolic enzymes and metabolites were experimentally validate.

    This work provided an integrated strategy for revealing the combination mechanisms of Chaihu-Baishao herb pair for treating depression, and also a rational way for clarifying the composition rules of TCM.

    This work provided an integrated strategy for revealing the combination mechanisms of Chaihu-Baishao herb pair for treating depression, and also a rational way for clarifying the composition rules of TCM.

    Commiphora leptophloeos (Mart.) J.B. Gillett (Burseraceae) is a medicinal plant native from the brazilian northeast caatinga biome, known popularly as “imburana” or “imburana-de-cambão”. The leaves of C. leptophloeos are widely used in folk medicine in the treatment of various inflammatory disorders. However, there is no scientific evidence to justify their popular use.

    This approach aimed to characterize the phytochemical profile of hydroethanolic leaf extract, as well as evaluate the anti-inflammatory and antioxidant potential activity and to investigate the acute toxicity with pre-clinical in vitro and in vivo methodologies.

    The phytochemical profile was characterized by UPLC-MS and FIA-ESI-IT-MS/MS. The in vitro anti-inflammatory potential the hydroethanolic extract of C. leptophloeos (1, 10, 100 and 200μg/mL) was investigated by lipopolysaccharide (LPS) induced nitric oxide assay, in order to analyze the potential decrease of nitric oxide (NO) production. For carrageenan-induced paw edema and zymos anti-inflammatory effect C. leptophloeos leaf extrat in inflammatory in vivo models, supporting its use in folk medicine for treatment of inflammatory diseases. Finally, glycosylated flavonoids can be responsible, at least in part, for this effect.

    Based on these results, is possible suggest that the anti-inflammatory activity revealed in this approach can be related to the modulating the level of cytokine, decrease of TNF-α, increase of IL-10 in vivo and also the inhibition of the production of nitric oxide RAW 264.7 activated by LPS. read more These results demonstrate the potential anti-inflammatory effect C. leptophloeos leaf extrat in inflammatory in vivo models, supporting its use in folk medicine for treatment of inflammatory diseases. Finally, glycosylated flavonoids can be responsible, at least in part, for this effect.

    The Zulu and Xhosa people of South Africa use the stem bark of Cassipourea flanaganii as a skin-lightning cosmetic.

    To isolate and identify compounds responsible for the skin lightning properties from the stem bark of Cassipourea flanaganii and to evaluate their cytotoxicity towards skin cells.

    Extracts from the stem bark of Cassipourea flanaganii were isolated using chromatographic methods and structures were determined using NMR, IR and MS analysis. The tyrosinase inhibitory activity and the ability to inhibit the production of melanin were determined using human primary epidermal melanocyte cells. Cytoxicity was established using the same melanocytes and a neutral red assay.

    One previously undescribed compound, ent-atis-16-en-19-al (1) along with the known ent-atis-16-en-19-oic acid (2), ent-atis-16-en-19-ol (3), ent-kaur-16-en-19-oic acid (4), ent-kaur-16-en-19-al (5), ent-manoyl oxide (6), guinesine A (7), guinesine B (8), guinesine C (9), lichenxanthone (10), 2,4-dihydroxy-3,6-dimethyl benzoic ah concentration and time dependent for all compounds tested with higher melanin content at 24h compared to 48hs and at 10mM compared to100mMat both time points; melanin content was significantly lower for hydroquinone at both time points and concentrations.

    Compounds 1, 5-14, isolated from Cassipourea flanaganii and the derivative 3a showed low cytotoxicity. All compounds had a clear time and concentration dependent effect on melanin content which did not appear to be dependent on their inhibition of tyrosinase.

    Compounds 1, 5-14, isolated from Cassipourea flanaganii and the derivative 3a showed low cytotoxicity. All compounds had a clear time and concentration dependent effect on melanin content which did not appear to be dependent on their inhibition of tyrosinase.

    Bile traditionally was used in wound healing, having erodent, antioxidant and antimicrobial potential. Acinetobacter baumannii is a frequent etiological agent of wound infections, exhibiting high level of resistance to conventional antibiotics.

    To determine the effect of selected bile acid sodium salts and their 3-dehydro (i.e. 3-oxo) derivatives, as well as their combinations with commercial antibiotics against A. baumanniia, to confirm bile ethnopharmacological application in wound healing from aspect of microbiology.

    The sensitivity of reference and multidrug resistant (MDR) A. baumannii strains to bile salts, their derivatives and conventional antibiotics were examined by a microtiter plate method. The interaction of bile salts/derivatives and antibiotics was examined by a checkerboard method and time kill curve method. The interaction of bile salts with ciprofloxacin in terms of micelles formation was examined by DOSY NMR technique.

    The bile salts sodium deoxycholate (Na-DCA) and sodium chenodeox cell penetration by membrane destabilization, contributing to the synergy.

    The synergistic interactions between bile salts or derivatives with ciprofloxacin and particularly gentamicin represent a promising strategy for the treatment of A. baumannii wound infections.

    The synergistic interactions between bile salts or derivatives with ciprofloxacin and particularly gentamicin represent a promising strategy for the treatment of A. baumannii wound infections.

Skip to toolbar