-
Silver posted an update 7 months, 1 week ago
0 IU/L, 95%CI -12.2 to -7.79 IU/L; I2 = 10.5%) and gamma-glutamyltransferase levels (WMD -14.49 IU/L, 95%CI -19.35 to -9.63 IU/L, I2 = 38.7%), as well as the absolute percentage of liver fat content on magnetic resonance-based techniques (WMD -2.05%, 95%CI -2.61 to -1.48%; I2 = 0%). In conclusion, SGLT-2 inhibitors seem to be a promising treatment option for NAFLD.The aim of this study was to determine whether, after 8 days of water-only fasting, there are changes in the efficiency of the lower urinary tract, the concentration of sex hormones, and the symptoms of prostate diseases in a group of middle-aged men (n = 14). For this purpose, before and after 8 days of water-only fasting (subjects drank ad libitum moderately mineralized water), and the following somatic and blood concentration measurements were made total prostate specific antigen (PSA-T), free prostate specific antigen (PSA-F), follicle stimulating hormone (FSH), luteotropic hormone (LH), prolactin (Pr), total testosterone (T-T), free testosterone (T-F), dehydroepiandrosterone (DHEA), sex hormone globulin binding (SHGB), total cholesterol (Ch-T), β-hydroxybutyrate (β-HB). In addition, prostate volume (PV), volume of each testis (TV), total volume of both testes (TTV), maximal urinary flow rate (Qmax), and International Prostate Symptom Score (IPSS) values were determined. The results showed that after 8 days of water-only fasting, Qmax and IPSS improved but PV and TTV decreased significantly. There was also a decrease in blood levels of PSA-T, FSH, P, T-T, T-F, and DHEA, but SHGB concentration increased significantly. These results indicate that 8 days of water-only fasting improved lower urinary tract functions without negative health effects.Curcuma amada Roxb. MG149 solubility dmso (Zingiberaceae), commonly known as mango ginger because its rhizome and foliar parts have a similar aroma to mango. The rhizome has been widely used in food industries and alternative medicines to treat a variety of internal diseases such as cough, bronchitis, indigestion, colic, loss of appetite, hiccups, and constipation. The composition of the volatile constituents in a fresh rhizome of C. amada is not reported in detail. The present study aimed to screen and characterize the composition of volatile organic compound (VOC) in a fresh rhizome of three C. amada (ZO45, ZO89, and ZO114) and one C. longa (ZO138) accessions originated from Myanmar. The analysis was carried out by means of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS). As a result, 122 VOCs were tentatively identified from the extracted 373 mass spectra. The following compounds were the ten most highly abundant and broadly present ones ar-turmerone, α-zingiberene, α-santalene, (E)-γ-atlantone, cuparene, β-bisabolene, teresantalol, β-sesquiphellandrene, trans-α-bergamotene, γ-curcumene. The intensity of ar-turmerone, the sesquiterpene which is mainly characterized in C. longa essential oil (up to 15.5-27.5%), was significantly higher in C. amada accession ZO89 (15.707 ± 5.78a) compared to C. longa accession ZO138 (0.300 ± 0.08b). Cis-α-bergamotene was not detected in two C. amada accessions ZO45 and ZO89. The study revealed between-species variation regarding identified VOCs in the fresh rhizome of C. amada and C. longa.In plants, fruit ripening is a coordinated developmental process that requires the change in expression of hundreds to thousands of genes to modify many biochemical and physiological signal cascades such as carbohydrate and organic acid metabolism, cell wall restructuring, ethylene production, stress response, and organoleptic compound formation. In Prunus species (including peaches, apricots, plums, and cherries), fruit ripening leads to the breakdown of complex carbohydrates into sugars, fruit firmness reductions (softening by cell wall degradation and cuticle properties alteration), color changes (loss of green color by chlorophylls degradation and increase in non-photosynthetic pigments like anthocyanins and carotenoids), acidity decreases, and aroma increases (the production and release of organic volatile compounds). Actually, the level of information of molecular events at the transcriptional, biochemical, hormonal, and metabolite levels underlying ripening in Prunus fruits has increased considerably. However, we still poorly understand the molecular switch that occurs during the transition from unripe to ripe fruits. The objective of this review was to analyze of the molecular bases of fruit quality in Prunus species through an integrated metabolic, genomic, transcriptomic, and epigenetic approach to better understand the molecular switch involved in the ripening process with important consequences from a breeding point of view.Hepatocellular carcinoma (HCC) is a worldwide health problem. HCC patients show a 50% mortality within two years of diagnosis. To better understand the molecular pathogenesis at the level of lipid metabolism, untargeted UPLC MS-QTOF lipidomics data were acquired from resected human HCC tissues and their paired nontumor hepatic tissues (n = 46). Blood samples of the same HCC subjects (n = 23) were compared to chronic liver disease (CLD) (n = 15) and healthy control (n = 15) blood samples. The participants were recruited from the National Liver Institute in Egypt. The lipidomics data yielded 604 identified lipids that were divided into six super classes. Five-hundred and twenty-four blood lipids were found as significantly differentiated (p less then 0.05 and qFDR p less then 0.1) between the three study groups. In the blood of CLD patients compared to healthy control subjects, almost all lipid classes were significantly upregulated. In CLD patients, triacylglycerides were found as the most significantly uphts the specific impact of HCC tumors on the circulating lipids. Such data may be used to target lipid metabolism for prevention, early detection and treatment of HCC in the background of viral-related CLD etiology.During pregnancy, infections caused by the gram-positive bacteria Enterococcus faecalis (E. faecalis), Streptococcus agalacticae (S. agalacticae), and Staphylococcus aureus (S. aureus) are major reasons for preterm labor, neonatal prematurity, meningitis, or sepsis. Here, we propose cytokine responses to bacterial infections by the immature perinatal immune system as central players in the pathogenesis of preterm birth and neonatal sepsis. We aimed to close the gap in knowledge about such cytokine responses by stimulating freshly isolated umbilical blood mononuclear cells (UBMC) with lysates of E. faecalis, S. agalacticae, and S. aureus collected from pregnant women in preterm labor. Bacterial lysates and, principally, S. aureus and S. agalacticae distinctly triggered most of the eleven inflammatory, anti-inflammatory, TH1/TH2 cytokines, and chemokines quantified in UBMC culture media. Chemokines depicted the most robust induction. Among them, MIP-1β was further enhanced in UBMC from female compered to male newborn infants.