Activity

  • Ladefoged posted an update 7 months, 2 weeks ago

    Interestingly, we noted a similarity in the dependence of membrane dipole potential and cholesterol with progress of the cell cycle. In addition, we observed an increase in neutral lipid (which contains esterified cholesterol) content as cells progressed from the G1 to G2/M phase via the S phase of the cell cycle. Importantly, we further observed a cell cycle dependent reduction in ligand binding activity of serotonin1A receptors expressed in CHO-K1 cells. To the best of our knowledge, these results constitute the first report of cell cycle dependent modulation of membrane dipole potential and activity of a neurotransmitter receptor belonging to the G protein-coupled receptor family. We envision that understanding the basis of cell cycle events from a biophysical perspective would result in a deeper appreciation of the cell cycle and its regulation in relation to cellular function.The polyglutamine tract length represents a key regulator for the Huntington’s disease toxicity level and its aggregation rates, often being related to helical structural conformations. In this study, we performed all-atom MD simulations on mutant Huntingtin-Exon1 protein with additional mutation spots, aiming to observe the corresponding structural and dynamical changes at the level of the helix. The simulated structures consist of three sets of Q residue mutations into P residues (4P, 7P, and 9P), with each set including different spots of mutations random along the mutant sequence (R models), at the edges of the helix (E models), as well as at the edges and in the middle of the helix (EM models). At the helical level, our results predict less compactness profiles for a higher number of P mutations (7P and 9P models) with particular mutation spots at the edges and at the edges-middle of the helix. Moreover, the C-alpha atom distances decreased for 7P and 9P models in comparison to 4P models, and the RMSF values show the highest fluctuation rates for 9P models with point mutations at the edges and in the middle of the helix. The secondary structure analysis suggests greater structural transitions from α-helices to bends, turns, and random coils for 7P and 9P models, particularly for point mutations considered at the edges and in the middle of the helical content. The obtained results support our hypothesis that specific key-point mutations along the helical conformation might have an antagonistic effect on the toxic helical content’s formation.Amyloid-beta peptides generated by β-secretase- and γ-secretase-mediated successive cleavage of amyloid precursor protein are believed to play a causative role in Alzheimer’s disease. Thus, reducing amyloid-beta generation by modulating γ-secretase remains a promising approach for Alzheimer’s disease therapeutic development. Here, we screened fruit extracts of Ligustrum lucidum Ait. (Oleaceae) and identified active fractions that increase the C-terminal fragment of amyloid precursor protein and reduce amyloid-beta production in a neuronal cell line. These fractions contain a mixture of two isomeric pentacyclic triterpene natural products, 3-O-cis- or 3-O-trans-p-coumaroyl maslinic acid (OCMA), in different ratios. We further demonstrated that trans-OCMA specifically inhibits γ-secretase and decreases amyloid-beta levels without influencing cleavage of Notch. By using photoactivatable probes targeting the subsites residing in the γ-secretase active site, we demonstrated that trans-OCMA selectively affects the S1 subsite of the active site in this protease. Treatment of Alzheimer’s disease transgenic model mice with trans-OCMA or an analogous carbamate derivative of a related pentacyclic triterpene natural product, oleanolic acid, rescued the impairment of synaptic plasticity. This work indicates that the naturally occurring compound trans-OCMA and its analogues could become a promising class of small molecules for Alzheimer’s disease treatment.Aneurysmal subarachnoid hemorrhage (SAH) causes permanent neurological sequelae, but the underlying mechanism needs to be further clarified. Here, we show that inhibition of metabotropic glutamate receptor 1 (mGluR1) with negative allosteric modulator JNJ16259685 improves long-term neurobehavioral outcomes in an endovascular perforation model of SAH. JNJ16259685 improves cerebrovascular dysfunction through attenuation of cerebral blood flow (CBF) reduction, cerebral vasoconstrictio, and microthrombosis formation in a rat SAH model. Moreover, JNJ16259685 reduces experimental SAH-induced long-term neuronal damage through alleviation of neuronal death and degeneration. Mechanically, JNJ16259685 maintains phosphorylation of endothelial NO synthase (eNOS) and vasodilator-stimulated phosphoprotein (VASP) and decreases apoptosis-related factors Bax, active caspase-9, and active caspase-3 following experimental SAH. Altogether, our results suggest JNJ16259685 improves long-term functional impairment through neurovascular protection.Because of its remarkable potency and relative ease of synthesis, carfentanil (1) has recently emerged as a problematic contaminant in other drugs of abuse. Carfentanil and its close analogs, currently approved only for large animal veterinary medicine, have found use both as illicit additives to the clandestine manufacture of scheduled drugs and as chemical weapons. In this Review, the background, synthesis, manufacture, metabolism, pharmacology, approved indications, dosage, and adverse effects of carfentanil will be discussed along with its emergence as a key player in the ongoing opioid crisis.Lithium has been used for the treatment of mood disorders for decades though the molecular mechanism of its therapeutic action and intracellular targets remain furtive. We report that neurotropic agent Li+ binds to the neuronal calcium sensor, Downstream Regulatory Element Antagonist Modulator (DREAM), with an equilibrium dissociation constant of 34 ± 4 μM and impacts DREAM structural and dynamic properties in a similar manner as observed for its physiological ligand, Ca2+. Puromycin aminonucleoside purchase Results of fluorescence spectroscopy and molecular dynamics are consistent with Li+ binding at EF-hands. In the Li+ bound form, DREAM association to peptides mimicking DREAM binding sites in a voltage-gated potassium channel is enhanced compared to the apoprotein, whereas DREAM affinity for the presenilin binding site, helix-9, is impeded. These results suggest that DREAM and possibly other members of the neuronal calcium sensor family belong to Li+ intracellular targets and interactions between Li+ and NCS provide a molecular basis for Li+ neuroprotective action.

Skip to toolbar