-
Kok posted an update 9 months, 1 week ago
While the effectiveness of baricitinib was similar regardless of whether patients had a history of only one or multiple targeted DMARDs use, patients with previous use of non-TNF inhibitors or JAK inhibitors showed lower rates of improvement in DAS28-CRP. The overall retention rate for baricitinib was 86.5% at 24 weeks, as estimated by Kaplan-Meier analysis. The discontinuation rate due to adverse events was 6.5% at 24 weeks. Baricitinib significantly improved RA disease activity in clinical practice. Baricitinib was significantly more effective when used as a first-line targeted DMARDs.The COVID-19 pandemic has shown how a newly emergent communicable disease can lay considerable burden on public health. GSK1325756 To avoid system collapse, governments have resorted to several social distancing measures. In Belgium, this included a lockdown and a following period of phased re-opening. A representative sample of Belgian adults was asked about their contact behaviour from mid-April to the beginning of August, during different stages of the intervention measures in Belgium. Use of personal protection equipment (face masks) and compliance to hygienic measures was also reported. We estimated the expected reproduction number computing the ratio of [Formula see text] with respect to pre-pandemic data. During the first two waves (the first month) of the survey, the reduction in the average number of contacts was around 80% and was quite consistent across all age-classes. The average number of contacts increased over time, particularly for the younger age classes, still remaining significantly lower than pre-pandemic values. From the end of May to the end of July , the estimated reproduction number has a median value larger than one, although with a wide dispersion. Estimated [Formula see text] fell below one again at the beginning of August. We have shown how a rapidly deployed survey can measure compliance to social distancing and assess its impact on COVID-19 spread. Monitoring the effectiveness of social distancing recommendations is of paramount importance to avoid further waves of COVID-19.We propose a novel class of mixed fluctuations with different orientations and fractal scaling features as a model for anisotropic two-dimensional (2D) trajectories hypothesized to appear in complex systems. Furthermore, we develop the oriented fractal scaling component analysis (OFSCA) to decompose such mixed fluctuations into the original orientation components. In the OFSCA, the original orientations are detected based on the principle that the original angles are orthogonal to the angles with the minimum and maximum scaling exponents of the mixed fluctuations. In our approach, the angle-dependent scaling properties are estimated using the Savitzky-Golay-filter-based detrended moving-average analysis (DMA), which has a higher detrending order than the conventional moving-average-filter-based DMA. To illustrate the OFSCA, we demonstrate that the numerically generated time-series of mixed fractional Gaussian noise (fGn) processes with non-orthogonal orientations and different scaling exponents is successfully decomposed into the original fGn components. We demonstrate the existence of oriented components in the 2D trajectories by applying OFSCA to real-world time-series, such as human postural fluctuations during standing and seismic ground acceleration during the great 2011 Tohoku-oki earthquake.Cell entry of SARS-CoV-2, the novel coronavirus causing COVID-19, is facilitated by host cell angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). We aimed to identify and characterize genes that are co-expressed with ACE2 and TMPRSS2, and to further explore their biological functions and potential as druggable targets. Using the gene expression profiles of 1,038 lung tissue samples, we performed a weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. We explored the biology of co-expressed genes using bioinformatics databases, and identified known drug-gene interactions. ACE2 was in a module of 681 co-expressed genes; 10 genes with moderate-high correlation with ACE2 (r > 0.3, FDR less then 0.05) had known interactions with existing drug compounds. TMPRSS2 was in a module of 1,086 co-expressed genes; 31 of these genes were enriched in the gene ontology biologic process ‘receptor-mediated endocytosis’, and 52 TMPRSS2-correlated genes had known interactions with drug compounds. Dozens of genes are co-expressed with ACE2 and TMPRSS2, many of which have plausible links to COVID-19 pathophysiology. Many of the co-expressed genes are potentially targetable with existing drugs, which may accelerate the development of COVID-19 therapeutics.Liver iron excess is observed in several chronic liver diseases and is associated with the development of hepatocellular carcinoma (HCC). However, apart from oxidative stress, other cellular mechanisms by which excess iron may mediate/increase HCC predisposition/progression are not known. HCC pathology involves epithelial to mesenchymal transition (EMT), the basis of cancer phenotype acquisition. Here, the effect of excess iron (holo-transferrin 0-2 g/L for 24 and 48 h) on EMT biomarkers in the liver-derived HepG2 cells was investigated. Holo-transferrin substantially increased intracellular iron. Unexpectedly, mRNA and protein expression of the epithelial marker E-cadherin either remained unaltered or increased. The mRNA and protein levels of metastasis marker N-cadherin and mesenchymal marker vimentin increased significantly. While the mRNA expression of EMT transcription factors SNAI1 and SNAI2 increased and decreased, respectively after 24 h, both factors increased after 48 h. The mRNA expression of TGF-β (EMT-inducer) showed no significant alterations. In conclusion, data showed direct link between iron and EMT. Iron elevated mesenchymal and metastatic biomarkers in HepG2 cells without concomitant decrement in the epithelial marker E-cadherin and altered the expression of the key EMT-mediating transcription factors. Such studies can help identify molecular targets to devise iron-related adjunctive therapies to ameliorate HCC pathophysiology.