-
Suarez posted an update 7 months, 2 weeks ago
The paper aims at offering a numerical approach in order to facilitate the design of FZP for integral imaging.Diabetes mellitus (DM) has been identified as a risk factor for severe COVID-19. DM is highly prevalent in the general population. Defining strategies to reduce the health care system burden and the late arrival of some patients thus seems crucial. The study aim was to compare phenotypic characteristics between in and outpatients with diabetes and infected by COVID-19, and to build an easy-to-use hospitalization prediction risk score. This was a retrospective observational study. Patients with DM and laboratory- or CT-confirmed COVID-19, who did (n = 185) and did not (n = 159) require hospitalization between 10 March and 10 April 2020, were compared. Data on diabetes duration, treatments, glycemic control, complications, anthropometrics and peripheral oxygen saturation (SpO2) were collected from medical records. Stepwise multivariate logistic regressions and ROC analyses were performed to build the DIAB score, a score using no more than five easy-to-collect clinical parameters predicting the risk of hospitalization. The DIAB score was then validated in two external cohorts (n = 132 and n = 2036). Erastin Hospitalized patients were older (68.0 ± 12.6 vs. 55.2 ± 12.6 years, p 27 points predicted hospitalization (sensitivity 77.7%, specificity 89.2%, AUC = 0.895), and death within 28 days. Its performance was validated in the two external cohorts. Outpatients with diabetes were found to be younger, with fewer diabetic complications and less severe obesity than inpatients. DIAB score is an easy-to-use score integrating five variables to help clinicians better manage patients with DM and avert the saturation of emergency care units.The development of advanced biosensors with high sensitivity and selectivity is one of the most demanded concerns in the field of biosensors. To meet this requirement, up until now, numerous nanomaterials have been introduced to develop biosensors for achieving high sensitivity and selectivity. Among the latest nanomaterials attracting attention, MXene is one of the best materials for the development of biosensors because of its various superior properties. MXenes are two-dimensional inorganic compounds with few atomic layers that possess excellent characteristics including high conductivity and superior fluorescent, optical, and plasmonic properties. In this review, advanced biosensors developed on the basis of the MXene nanocomposite are discussed with the selective overview of recently reported studies. For this, introduction of the MXene including the definition, synthesis methods, and its properties are discussed. Next, MXene-based electrochemical biosensors and MXene-based fluorescent/optical biosensors are provided, which are developed on the basis of the exceptional properties of the MXene nanocomposite. This review will suggest the direction for use of the Mxene nanocomposite to develop advanced biosensors with high sensitivity and selectivity.Aptamers are nucleic acid ligands that bind specifically to a target of interest. Aptamers have gained in popularity due to their high potential for different applications in analysis, diagnostics, and therapeutics. The procedure called systematic evolution of ligands by exponential enrichment (SELEX) is used for aptamer isolation from large nucleic acid combinatorial libraries. The huge number of unique sequences implemented in the in vitro evolution in the SELEX process imposes the necessity of performing extensive sequencing of the selected nucleic acid pools. High-throughput sequencing (HTS) meets this demand of SELEX. Analysis of the data obtained from sequencing of the libraries produced during and after aptamer isolation provides an informative basis for precise aptamer identification and for examining the structure and function of nucleic acid ligands. This review discusses the technical aspects and the potential of the integration of HTS with SELEX.One key element for emergency department (ED) staff calculation is the mean physician time per patient (MPTPP) and its influencing factors. The aims of this study were measuring the MPTPP, identifying factors with significant influence on the MPTPP, and developing a model to predict the MPTPP. This study was a prospective trial conducted at the ED of a university hospital in Germany. The MPTPP was measured with a specifically developed app. The influence of different factors on MPTPP were first tested in univariate analysis. Then, all significant factors were used in a multivariant regression model to minimize collinearities and to develop a prediction model. In total, 202 patients treated by 32 different physicians were observed within one year. The MPTPP was 47 min (standard deviation 34 min). Relevant factors influencing the MPTPP were treatment area, Emergency Severity Index (ESI) triage level, guiding symptom category, and physician level (all p less then 0.001). This model predicted 45% of the variance in the MPTPP (p less then 0.001), which corresponds to a large effect size. We developed an effective prediction model for ED MPTPP, resulting in an MPTPP of 47 min. Future studies are needed to validate our model, which could serve as a benchmark for other EDs where the MPTPP is not available.In this study, single-phase Cs0.33WO3 nanocrystals were synthesized by a novel mist chemical vapor deposition method. As prepared, Cs0.33WO3 nanocrystals exhibited a microsphere-like appearance constructed with angular crystal grains with an average size of about 30-40 nm. Characterization by X-ray photoelectron spectroscopy indicated that Cs0.33WO3 nanocrystals consisted of mixed chemical valence states of tungsten ions W6+ and W5+, inducing many free electrons, which could scatter and absorb near-infrared (NIR) photons by plasmon resonance. These Cs0.33WO3 microspheres consisted of a loose structure that could be crushed to nanoscale particles and was easily applied for producing long-term stable ink after milling. Herein, a Cs0.33WO3/polymer composite was successfully fabricated via the ultrasonic spray coating method using mixed Cs0.33WO3 ink and polyurethane acrylate solution. The composite coatings exhibited excellent IR shielding properties. Remarkably, only 0.9 mg cm-2 Cs0.33WO3 could shield more than 70% of NIR, while still maintaining the visible light transmittance higher than 75%.