-
Have posted an update 9 months, 1 week ago
The accurate detection of hydrogen peroxide (H2O2)-involved metabolites plays a significant role in the early diagnosis of metabolism-associated diseases, whereas most of current metabolite-sensing systems are often hindered by low sensitivity, interference of coexisting species, or tedious preparation. Herein, an electrochemistry-regenerated surface-enhanced Raman scattering (SERS) sensor was developed to serve as a universal platform for detecting H2O2-involved metabolites. The SERS sensor was constructed by modifying newly synthesized 2-mercaptohydroquinone (2-MHQ) molecules on the surface of gold nanoparticles (AuNPs) that were electrochemically predeposited on an ITO electrode. Metabolites were detected through the changes in the SERS spectrum as a result of the reaction of 2-MHQ with H2O2 induced by the metabolites. Combining the superiority of SERS fingerprint identification and the specificity of the related enzymatic reactions producing H2O2, the designed SERS sensor was highly selective in detecting glucose and uric acid as models of H2O2-involved metabolite with limits of detection (LODs) of 0.159 μM and 0.0857 μM, respectively. Moreover, the sensor maintained a high SERS activity even after more than 10 electrochemical regenerations within 2 min, demonstrating its effectiveness for the rapid detection of various metabolites with electrochemistry-driven regulation. Importantly, the presented SERS sensor showed considerable practicability for the detection of metabolites in real serum samples. Accordingly, the SERS sensor is a new detection platform for H2O2-involved metabolites detection in biological fluids, which may aid the early diagnosis of metabolism-related diseases.This manuscript describes the reuse of biowaste for the biosynthesis of silver nanoparticles (AgNPs) and their applications. In particular, we hypothesized that the phytochemicals in the onion peels could act as reductant for silver nanoparticles syntheses. AgNO3 solution (1 mmol) was added dropwise to an aqueous solution of onion peel extract in 37 ratio. The reaction mixture was subjected to heating at 90 °C for about 30 min. During the synthesis of the AgNPs, the change of the colour of solution was observed. The AgNPs solution was centrifuged to obtain the two layers, which consists of clear solution and solid layers at 12000 rpm for 30 min. The precipitate was filtered and was re-dispersed in deionised water (25 mL). The solution was centrifuged again to obtain the purified AgNPs. Subsequently, this solution was freeze dried for 48 h to afford the powdered AgNPs. In this work, the structure of the AgNPs were synthesized in spherical shape, with an average size of 12.5 nm observed in the Transmission electron microscopy (TEM) analysis. For catalytic application, the synthesized AgNPs could be applied as green catalyst to promote Knoevenagel and Hantzsch reactions. In most cases, the desired products were obtained in satisfactory yields. In addition, the AgNPs were found to be recyclable for the subsequent reactions. After five successive runs, the average isolated yields for both transformations were recorded to be 91% (Knoevenagel condensation) and 94% (Hantzsch reaction), which indicated that the existing AgNPs could apply as green catalyst in the field of organic synthesis. Furthermore, the AgNPs also showed satisfactory result in antioxidant activity. The current results indicate that the AgNPs can act as alternative antioxidant agent and green catalyst in mediating organic transformations.Chemicals such as triclosan are a concern because of their presence on daily products (soap, deodorant, hand sanitizers …), consequently this compound has an ubiquitous presence in the environment. Little is known about the effect of this bactericide on aquatic life. The aim of this study is to analyze triclosan exposure (24 h) to an in vitro model, zebrafish hepatocytes cell line (ZF-L), if it can be cytotoxic (mitochondrial activity, membrane stability and apoptosis) and if can activate ATP-binding cassette (ABC) proteins (activity, expression and protein/compound affinity). Triclosan was cytotoxic to hepatocytes when exposed to concentrations (1-4 mg/L). The results showed impaired mitochondria function, as well, plasma membrane rupture and an increase of apoptotic cells. We observed an ABC proteins activity inhibition in cells exposed to 0.5 and 1 mg/L. When ABCBs and ABCC2 proteins expression were analyzed, there was an increase of protein expression in both ABC proteins families on cells exposed to 1 mg/L of triclosan. On molecular docking results, triclosan and the fluorescent used as substrate (rhodamine) presented high affinity with all ABC proteins family tested, showing a greater affinity with ABCC2. In conclusion, this study showed that triclosan can be cytotoxic to ZF-L. Molecular docking indicated high affinity between triclosan and the tested pumps.Nitrous acid (HONO) production from the heterogeneous photochemical reaction of NO2 on several Chinese soils was performed in a cylindrical reactor at atmospheric pressure. The NO2 uptake coefficient (γ) and HONO yield (YHONO) on different soils were (0.42-5.16) × 10-5 and 6.3%-69.6%, respectively. Although the photo-enhanced uptake of NO2 on different soils was observed, light could either enhance or inhibit the conversion efficiency of NO2 to HONO, depending on the properties of the soils. Soils with lower pH generally had larger γ and YHONO. Soil organics played a key role in HONO formation through the photochemical uptake of NO2 on soil surfaces. The γ showed a positive correlation with irradiation and temperature, while it exhibited a negative relationship with relative humidity (RH). YHONO inversely depended on the soil mass (0.32-3.25 mg cm-2), and it positively relied on the irradiance and RH (7%-22%). selleck inhibitor There was a maximum value for YHONO at 298 K. Based on the experimental results, HONO source strengths from heterogeneous photochemical reaction of NO2 on the soil surfaces were estimated to be 0.2-2.7 ppb h-1 for a mixing layer height of 100 m, which could account for the missing daytime HONO sources in most areas.