-
Chappell posted an update 7 months, 1 week ago
Pancreastatin (PST) is a crucial bioactive peptide derived from chromogranin A (CHGA) proprotein that exhibits an anti-insulin effect on adipocytes. Herein, we investigated the effects of PST on brown adipose tissues (BAT) and white adipose tissue (WAT) in connection with uncoupling protein-1 (UCP-1) regulated energy expenditure in high fructose diet (HFrD) fed and vinylcyclohexenediepoxide (VCD) induced perimenopausal rats.
We administered VCD in rats for 17 consecutive days and fed HFrd for 12weeks. After 12weeks estradiol and progesterone levels were detected. Furthermore, detection of glucose tolerance, insulin sensitivity, and body composition revealed impaired glucose homeostasis and enhanced PST levels. Effects of enhanced PST on UCP-1 level in BAT and WAT of perimenopausal rats were further investigated.
Reduced serum estradiol, progesterone, and attenuated insulin response confirmed perimenopausal model development. Fasudil chemical structure Furthermore, enhanced PST serum level and its increased expression in BAT and WAT downregulated the UCP-1 expression. Subsequently, impaired ATP level, NADP/NADPH ratio, citrate synthase activity, enhanced mitochondrial reactive oxygen species (ROS) generation and perturbed mitochondrial membrane potential, further exacerbated mitochondrial dysfunction, cellular ROS production, and promoted apoptosis. Interestingly, PST inhibition by PST inhibitor peptide-8 (PSTi8) displayed a favorable impact on UCP-1 and energy expenditure.
The aforementioned outcomes indicated the substantial role of PST in altering the UCP-1 expression and associated energy homeostasis. Hence our results corroborate novel avenues to unravel the quest deciphering PST’s role in energy homeostasis and its association with perimenopause.
The aforementioned outcomes indicated the substantial role of PST in altering the UCP-1 expression and associated energy homeostasis. Hence our results corroborate novel avenues to unravel the quest deciphering PST’s role in energy homeostasis and its association with perimenopause.
Early and prompt treatment of sepsis by effective antibiotics against susceptible organisms may be lifesaving. However, increased antibiotic resistance and side effects of chemotherapeutic agents limiting their tolerability result in a restricted use of medications. This has led to an increased search for solution oriented novel treatments and therapeutic targets, as well as investigations on the pathogenesis and physiology of sepsis. In this study, we aimed to examine the antioxidant and anti-inflammatory effects of fosfomycin in sepsis resulting from other causes.
Sprague Dawley rats were assigned into three groups. Randomly selected control rats received intraperitoneal saline solution only. Only caecal puncture and ligation were carried out in the caecal ligation and puncture (CLP) group, while in the CLP+fosfomycin group (CLP+FOS), together with sepsis due to caecal puncture and ligation, 500mg/kg of FOS was administered intraperitoneally (i.p.).
As compared to the control group, elevated TBARS and TNF-α levels as well as increased expression of NF-kB/p65 and TLR-4 and reduced -SH levels were found in the lung tissue of CLP rats. On the other hand, TBARS and TNF-α levels were reduced and NF-kB/p65 and TLR-4 expressions were decreased together with increase in total -SH levels among CLP+FOS (500mg/kgi.p.) rats.
FOS treatment may represent a promising agent in terms of reducing the sepsis-related lung injury due to its antimicrobial effects as well as its antioxidant and anti-inflammatory properties.
FOS treatment may represent a promising agent in terms of reducing the sepsis-related lung injury due to its antimicrobial effects as well as its antioxidant and anti-inflammatory properties.
Acetaminophen (APAP) toxicity is one of the leading causes of acute liver injury-related death and liver failure worldwide. In many studies, mitochondrial dysfunction has been identified as an important cause of damage in APAP toxicity. Therefore, our study aimed to investigate the possible effects of mitochondrial transplantation on liver damage due to APAP toxicity.
APAP toxicity model was implemented by administering a toxic dose of APAP. To demonstrate the efficiency of mitochondria transplantation, it was compared with N-acetylcysteine (NAC) application, which is now clinically accepted. Mitochondrial transplantation was carried out by delivering mitochondria to the liver via the portal circulation, which was injected into the spleen. In our study, the rats were randomly divided into 6 groups as Sham, APAP, Control 1, APAP+mito, Control 2, and APAP+NAC. In the end of the experiment, histological and biochemical analysis were performed and the biodistribution of the transplanted mitochondria to target cells were also shown.
Successful mitochondrial transplantation was confirmed and mitochondrial transplantation improved the liver histological structure to a similar level with healthy rats. Moreover, plasma ALT levels, apoptotic cells, and total oxidant levels were decreased. It was also observed that NAC treatment increased GSH levels to the highest level among the groups. However, mitochondrial transplantation was more effective than NAC application in terms of histological and functional improvement.
It has been evaluated that mitochondrial transplantation can be used as an important alternative or adjunctive treatment method in liver damage caused by toxic dose APAP intake.
It has been evaluated that mitochondrial transplantation can be used as an important alternative or adjunctive treatment method in liver damage caused by toxic dose APAP intake.Gulf war illness (GWI) is a chronic disorder of unknown etiology characterized by multiple symptoms such as pain, fatigue, gastrointestinal disturbances and neurocognitive problems. Increasing evidence suggests that gut microbiome perturbations play a key role in the pathology of this disorder. GWI courses with gut microbiota alterations and their metabolites (e.g. short chain fatty acids -SCFA-), which can be aggravated by lifestyle risk factors such as a high fat diet (HF). To investigate the causative role of the gut microbiome, non-absorbable antibiotics (Abx) were administered to mice treated with GWI agents and concomitantly fed with a HF. In light of the wide use of Abx as pseudo-germ-free models, we evaluated the effects of Abx exposure on GWI and HF on body weight, food intake, gut microbiota changes and levels of the SCFA acetate. Results show that HF decreased food intake while increasing body weight in both controls and GWI. Exposure to Abx prevented these HF effects by offsetting the body weight gain in GWI.