-
McCall posted an update 8 months, 4 weeks ago
Trehalose is a versatile non-reducing sugar. this website In some animal groups possessing its intrinsic production machinery, it is used as a potent protectant against environmental stresses, as well as blood sugar. However, the trehalose biosynthesis genes remain unidentified in the large majority of metazoan phyla, including vertebrates. To uncover the evolutionary history of trehalose production machinery in metazoans, we scrutinized the available genome resources and identified bifunctional trehalose-6-phosphate synthase-trehalose-6-phosphate phosphatase (TPS-TPP) genes in various taxa. The scan included our newly sequenced genome assembly of a desiccation-tolerant tardigrade Paramacrobiotus sp. TYO, revealing that this species retains TPS-TPP genes activated upon desiccation. Phylogenetic analyses identified a monophyletic group of the many of the metazoan TPS-TPP genes, namely ‘pan-metazoan’ genes, that were acquired in the early ancestors of metazoans. Furthermore, coordination of our results with the previous horizontal gene transfer studies illuminated that the two tardigrade lineages, nematodes and bdelloid rotifers, all of which include desiccation-tolerant species, independently acquired the TPS-TPP homologues via horizontal transfer accompanied with loss of the ‘pan-metazoan’ genes. Our results indicate that the parallel evolution of trehalose synthesis via recurrent loss and horizontal transfer of the biosynthesis genes resulted in the acquisition and/or augmentation of anhydrobiotic lives in animals.Teleost fish are the most diverse group of vertebrates and provide opportunities to study the evolution of sex determination (SD) systems. Using genomic and functional analyses, we identified a male-specific duplication of anti-Müllerian hormone (amh) gene as the male master sex-determining (MSD) gene in Sebastes schlegelii. By resequencing 10 males and 10 females, we characterized a 5 kb-long fragment in HiC_Scaffold_12 as a male-specific region, which contained an amh gene (named amhy). We then demonstrated that amhy is a duplication of autosomal amh that was later translocated to the ancestral Y chromosome. amha and amhy shared high-nucleotide identity with the most significant difference being two insertions in intron 4 of amhy. Furthermore, amhy overexpression triggered female-to-male sex reversal in S. schlegelii, displaying its fundamental role in driving testis differentiation. We developed a PCR assay which successfully identified sexes in two species of northwest Pacific rockfish related to S. schlegelii. However, the PCR assay failed to distinguish the sexes in a separate clade of northeast Pacific rockfish. Our study provides new examples of amh as the MSD in fish and sheds light on the convergent evolution of amh duplication as the driving force of sex determination in different fish taxa.Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.SUMOylation dynamically conjugates SUMO molecules to the lysine residue of a substrate protein, which depends on the physiological state of the cell and the attached SUMO isoforms. A prominent role of SUMOylation in molecular pathways is to govern the cellular death process. Herein, we summarize the association between SUMOylation modification events and four types of cellular death processes apoptosis, autophagy, senescence and pyroptosis. SUMOylation positively or negatively regulates a certain cellular death pattern depending on specific conditions including the attached SUMO isoforms, disease types, substrate proteins and cell context. Moreover, we also discuss the possible role of SUMOylation in ferroptosis and propose a potential role of the SUMOylated GPX4 in the regulation of ferroptosis. Mapping the exact SUMOylation network with cellular death contributes to develop novel SUMOylation-targeting disease therapeutic strategies.
Prolonged mechanical ventilation (MV) is often associated either with a decrease (known atrophy) or an increase (supposed injury) in diaphragmatic thickness. Shear wave elastography is a non-invasive technique that measures shear modulus, a surrogate of tissue stiffness and mechanical properties.
To describe changes in shear modulus (SM) during the ICU stay and the relationship with alterations in muscle thickness. To perform a comprehensive ultrasound-based characterization of histological and force production changes occurring in the diaphragm.
Translational study using critically ill patients and mechanically ventilated piglets. Serial ultrasound examination of the diaphragm collecting thickness and SM was performed in both patients and piglets. Transdiaphragmatic pressure and diaphragmatic biopsies were collected in piglets.
We enrolled 102 patients, 88 of whom were invasively mechanically ventilated. At baseline, SM was 14.3+/-4.3 kPa and diaphragm end-expiratory thickness was 2.0+/-0.5 mm. Decrease or increase by more than 10% from baseline was reported in 86% of the patients for thickness and in 92% of the patients for shear modulus.