Activity

  • McNamara posted an update 9 months ago

    Thus, REDV-loaded PEGMA hydrogel hybrid pericardium is a promising approach for obtaining pre-mounted dry TAVI valves with enhanced endothelialization properties.A new N- and S-rich highly ordered periodic mesoporous organosilica material DMTZ-PMO bearing thiadiazole and thiol moieties inside the pore-wall of a 2D-hexagonal nanomaterial has been synthesized. DMTZ-PMO shows a very high surface area (971 m2 g-1), and can be used for efficient and fast removal of Hg2+ from polluted water with a very high Hg2+ uptake capacity of 2081 mg g-1.We report novel superhydrophobic highly flexible composites based on a doubly cross-linked (DCL) aerogel and carbon nanotubes (CNTs) for strain/pressure sensing. The DCL aerogel/CNT composite is prepared by radical polymerization of vinylmethyldimethoxysilane and vinyldimethylmethoxysilane, respectively, followed by hydrolytic co-polycondensation of the obtained polyvinylmethyldimethoxysilane and polyvinyldimethylmethoxysilane, combined with the incorporation of CNTs. Mycophenolic Benefiting from the flexible methyl-rich DCL structure of the aerogel and conductive CNTs, the resultant DCL aerogel/CNT composite combines superhydrophobicity, high compressibility, high bendability, high elasticity, and strain- and pressure-sensitive conductivity. We demonstrate that the composite can be applied as a high-performance strain/pressure sensor for the detection of arterial pulse waves and joint bending with high sensitivity and high durability against humidity.This article highlights the recent fundamental study in using achiral and chiral porous materials for the potential applications in asymmetric catalysis. Thanks to the new-generation synchrotron X-ray powder diffraction (SXRD) facilities, we reveal the presence of the unique ‘chiral region’ in achiral zeolites with the MFI topology. Both the inherent site-isolation effect of the active sites and internal confinement restraints in zeolites are critical for creating ‘chiral regions’ that can aid the design of more enantioselective catalytic reactions. We also offer an outlook on the challenges and opportunities of this research area.Here we report the first synthesis of sequence-defined polytriazoles, in which different side groups are sequentially anchored to the C-5 position of 1,2,3-triazole rings. By using efficient synthetic strategies based on IrAAC and CuAAC, different monodispersed polytriazoles with up to ∼5.3 kDa and 31-mer were constructed. Structural characterization via NMR, SEC, MALDI-TOF-MS, tandem MS and FTICR-MS evidenced the formation of polytriazoles with the desired specified sequences and exact chain lengths.A composite of hollow structure CoS2/nitrogen-doped carbon spheres derived from a Co-based metal-organic framework has been fabricated through a facile synthetic route and delivered superior rate capability and long-term cycling performance as an anode for lithium- and sodium-ion batteries.Using first-principles calculations within density functional theory, we explore the electronic properties of the α-tellurene/h-BN (Te/BN) heterostructure. We find that the type-I van der Waals (vdW) Te/BN bilayer exhibits an indirect semiconductor property with a bandgap of 0.59 eV, in which both the valence band maximum and conduction band minimum originate from the tellurene monolayer. The very weak interaction between α-tellurene and h-BN monolayers is demonstrated by the small charge transfer between the interlayer. More strikingly, we find that the carrier mobilities in the Te/BN bilayer can reach up to 104 cm2 s-1 V-1, one order of magnitude larger than those in tellurene. The underlying physics is that the Te/BN bilayer dramatically increases the in-plane stiffness as well as reducing the deformation potential compared with the tellurene monolayer. Additionally, we also show that the electronic properties of the Te/BN bilayer can easily be tuned by introducing defects or dopants in the BN monolayer. For instance, the B vacancy makes the Te/BN bilayer undergo the transition from semiconductor to half-metal. Our findings will broaden the potential application of tellurene and provide theoretical guidance for the relative experimental studies on 2D heterobilayers.The structural, thermodynamic, electronic, and elastic properties of Th1-xUxO2 and Th1-xPuxO2 mixed oxides (MOX) have been calculated with Hubbard corrected density functional theory (DFT+U) to account for the strong 5f electron correlations. The ideal solid solution is approximated by special quasi-random structures and the U-ramping method is used to account for the presence of metastable states in the self-consistent field solution of the DFT+U approach. The mixing enthalpy (ΔHmix) is positive throughout the composition range of the Th1-xUxO2 MOX, consistent with a simple miscibility gap (at low temperature) phase diagram. The behavior of the Th1-xPuxO2 MOX is more complex, where ΔHmix is positive in the ThO2-rich region and negative in the PuO2-rich region. Electronic structure analysis shows that substitution of Th by U/Pu in ThO2 leads to a reduction of the average Th-O bond lengths, causing distortion in the crystal structure. The distortion in the crystal structure results in an increase in the conduction bandwidth and a reduction of the band-gap in the MOX. Good agreement of our DFT+U calculated elastic properties of ThO2, UO2 and PuO2 compounds with experiments leads to convincing prediction of these properties for Th1-xUxO2 and Th1-xPuxO2 MOX.Conductive and transparent coatings consisting of silver nanowires (AgNWs) are promising candidates for emerging flexible electronics applications. Coatings of aligned AgNWs offer unusual electronic and optical anisotropies, with potential for use in micro-circuits, antennas, and polarization sensors. Here we explore a microfluidics setup and flow-induced alignment mechanisms to create centimeter-scale highly conductive coatings of aligned AgNWs with order parameters reaching 0.84, leading to large electrical and optical anisotropies. By varying flow rates, we establish the relationship between the shear rate and the alignment and investigate possible alignment mechanisms. The angle-dependent sheet resistance of the aligned AgNW networks exhibits an electronic transport anisotropy of ∼10× while maintaining low resistivity ( less then 50 Ω sq-1) in all directions. When illuminated, the aligned AgNW coatings exhibit angle- and polarization-dependent colors, and the polarized reflection anisotropy can be as large as 25.

Skip to toolbar