-
Ogden posted an update 9 months, 1 week ago
The cyanobacterial phycobiliproteins (PBPs) are an important natural colorant for nutraceutical industries. Here, a multi-objective hybrid machine learning-based optimization approach was used for enhanced cell biomass and PBPs production simultaneously in Nostoc sp. CCC-403. A central composite design (CCD) was employed to design an experimental setup for four input parameters, including three BG-11 medium components and pH. We achieved a 61.76% increase in total PBPs production and an almost 90% increase in cell biomass by our prediction model. We also established a test genome-scale metabolic network (GSMN) for Nostoc sp. and identified potential metabolic fluxes contributing to PBPs enhanced production. This study highlights the advantage of the hybrid machine learning approach and GSMN to achieve optimization for more than one objective and serves as the foundation for future efforts to convert cyanobacteria as an economically viable source for biofuels and natural products.The aim of this study was to investigate the pathways and mechanisms of nitrogen transformation during the composting process, by adding diatomite (0%, 2.5%, 5%, 10%, 15% and 20%) into initial mixtures of pig manure and sawdust. The results revealed that diatomite facilitated the conversion from NH4+-N to amino acid nitrogen and hydrolysis undefined nitrogen, then reduced NH3 and N2O emission by 8.63-35.29% and 14.34-73.21%, respectively. Moreover, the structure and abundance of nitrogen functional genes provided evidence for nitrogen loss. Furthermore, compared with the control (0.03), the treatment blended with 10% diatomite (T3) had the highest value in composting score (-1.27). Additionally, the ratio of carbon and nitrogen (57.30%) was vital for reducing nitrogen loss among all physio-chemical parameters in this study. In conclusion, adding diatomite was a practical way to enhance nitrogen conservation and increase quality of end products, and the optimum added dosage was at 10%.E2CD154 is a vaccine candidate against classical swine fever (CSF) based on a chimeric protein composed of the E2 glycoprotein fused to porcine CD154 antigen, and formulated in the oil adjuvant Montanide™ ISA 50 V2. This vaccine confers early protection in pigs and prevents vertical transmission in pregnant sows. The objectives of this study were to assess the safety of this immunogen in piglets, to compare several doses of antigen in the formulation, and to study the duration of the immunity provided by this vaccine for up to 9 months. Three trials were conducted by immunizing pigs with a two-dose regime of the vaccine. Challenge experiments were carried out with the highly pathogenic Margarita strain. No local or systemic adverse effects were documented, and neither macroscopic nor microscopic pathological findings were observed in the vaccinated animals. The three antigen doses explored were safe and induced CSF protective neutralizing antibodies. The dose of 50 μg was selected for further development because it provided the best clinical and virological protection. Finally, this protective immunity was sustained for at least 9 months. This study demonstrates that E2CD154 vaccine is safe; defines a vaccine dose of 50 μg antigen, and evidences the capacity of this vaccine to confer long term protection from CSFV infection for up to 9 months post- vaccination. These findings complement previous data on the evaluation of this vaccine candidate, and suggest that E2CD154 is a promising alternative to modified live vaccines in CSF endemic areas.Starch is the main energy source in broiler diets. However, endogenous amylase secretion in young broilers is suboptimal to completely digest dietary starch, so exogenous α-amylase supplementation may help increase starch digestibility. The objective of this study was to assess the supplementation of increasing doses of an exogenous α-amylase (0, 40, 80, 120, and 160 kilo-novo α-amylase units (KNU)/kg) on corn and on a complete corn-soybean meal diet for 25-day-old broilers. Jejunal and ileal apparent digestibility coefficients of available starch, resistant starch, total starch, and DM, DM total tract retention, as well as dietary AME levels were evaluated. Interactions (P less then 0.05) between diets and α-amylase showed that the enzyme had a more evident effect on increasing DM jejunal digestibility and AME on corn compared with the complete diet. Corn DM digestibility increased to a maximum of 67.84% with up to 47 KNU/kg, whereas 89 KNU/kg led to a maximum of 53.92% in the complete diet A maximum increase of 64 kcal AME/kg was obtained with 80 KNU/kg on the complete diet, whereas 109 KNU/kg generated 327 kcal AME/kg on corn (P less then 0.05). Increasing the α-amylase dose linearly increased ileal digestibility of resistant starch (P less then 0.05), and the effect on DM total tract retention was quadratic (P less then 0.05). Corn showed a higher digestibility for DM, resistant and total starch, as well as DM total tract retention and AME, compared with the complete diet (P less then 0.05). Treatments had no influence on available starch. The inclusion of exogenous α-amylase improves starch, DM, and energy utilization of corn-based and corn-soybean meal-based diets for broilers.In the medulla of bursal follicle, only the secretory dendritic cell (BSDC) is furnished with secretory machinery. The granular discharge of BSDC appears in membrane-bound and solubilized forms. Movat pentachrome staining proves that the solubilized form is a glycoprotein, which fills up the extracellular space of follicular medulla. The glycoprotein contributes to bursal microenvironment and may be attached to the surface of medullary lymphocytes. The secretory granules of BSDC may be fused, resulting in large, irregular dense bodies, which are the first sign of BSDC transformation to macrophage-like cells (Mal). To determine the effect of infectious bursal disease virus (IBDV) infection on the extracellular glycoprotein and BSDC, SPF chickens were experimentally infected with IBDV. On the surface of BSDC, the secretory substance is in high concentration, which may contribute to primary binding of IBDV to BSDC. selleck kinase inhibitor The early distribution of IBDV infected cells is in consent with that BSDC. The IBDV infected BSDC rapidly transforms to Mal in which the glycoprotein staining appears.