Activity

  • Johnston posted an update 1 year ago

    From a mechanistic point of view, we speculated that the imine intermediate, synthesized by oxidases or dehydrogenases, could be converted into primary α-aminonitrile by nucleophilic addition of cyanide in aqueous solutions. Nitriles and some unnatural amino acids were synthesized through a cascade reaction by oxidative cyanation reaction with the variant and a wide substrate specificity nitrilase.Flavin-dependent enzymes catalyze a wide variety of biological reactions that are important for all types of living organisms. Knowledge gained from studying the chemistry and biological functions of flavins and flavin-dependent enzymes has continuously made significant contributions to the development of the fields of enzymology and metabolism from the 1970s until now. The enzymes have been applied in various applications such as use as biocatalysts in synthetic processes for the chemical and pharmaceutical industries or in the biodetoxification and bioremediation of toxic or unwanted compounds, and as biosensors or biodetection tools for quantifying various agents of interest. Many flavin-dependent enzymes are also prime targets for drug development. Based on their reaction mechanisms, they can be classified into five categories oxidase, dehydrogenase, monooxygenase, reductase, and redox neutral flavin-dependent enzymes. In this chapter, the general properties of flavin-dependent enzymes and the nature of their chemical reactions are discussed, along with their practical applications.Deep brain stimulation is a promising therapeutic approach for patients with treatment-resistant obsessive-compulsive disorder, a condition linked to abnormalities in corticobasal ganglia networks. Effective targets are placed in one of four subcortical areas with the goal of capturing prefrontal, anterior cingulate, and basal ganglia connections linked to the limbic system. These include the anterior limb of the internal capsule, the ventral striatum, the subthalamic nucleus, and a midbrain target. The goal of this review is to examine these 4 targets with respect to the similarities and differences of their connections. Following a review of the connections for each target based on anatomic studies in nonhuman primates, we examine the accuracy of diffusion magnetic resonance imaging tractography to replicate those connections in nonhuman primates, before evaluating the connections in the human brain based on diffusion magnetic resonance imaging tractography. Results demonstrate that the four targets generally involve similar connections, all of which are part of the internal capsule. Nonetheless, some connections are unique to each site. Delineating the similarities and differences across targets is a critical step for evaluating and comparing the effectiveness of each and how circuits contribute to the therapeutic outcome. It also underscores the importance that the terminology used for each target accurately reflects its position and its anatomic connections, so as to enable comparisons across clinical studies and for basic scientists to probe mechanisms underlying deep brain stimulation.Protein composition is restricted by the genetic code to a relatively small number of natural amino acids. Similarly, the known three-dimensional structures adopt a limited number of protein folds. However, proteins exert a large variety of functions and show a remarkable ability for regulation and immediate response to intracellular and extracellular stimuli. To some degree, the wide variability of protein function can be attributed to the post-translational modifications. Post-translational modifications have been observed in all kingdoms of life and give to proteins a significant degree of chemical and consequently functional and structural diversity. Their importance is partly reflected in the large number of genes dedicated to their regulation. So far, hundreds of post-translational modifications have been observed while it is believed that many more are to be discovered along with the technological advances in sequencing, proteomics, mass spectrometry and structural biology. Indeed, the number of studies which report novel post translational modifications is getting larger supporting the notion that their space is still largely unexplored. In this review we explore the impact of post-translational modifications on protein structure and function with emphasis on catalytic activity regulation. We present examples of proteins and protein families whose catalytic activity is substantially affected by the presence of post translational modifications and we describe the molecular basis which underlies the regulation of the protein function through these modifications. When available, we also summarize the current state of knowledge on the mechanisms which introduce these modifications to protein sites.Dihydropyrimidinase catalyzes the reversible hydrolytic ring opening of dihydrouracil and dihydrothymine to N-carbamoyl-β-alanine and N-carbamyl-β-aminoisobutyrate, respectively. Dihydropyrimidinase from microorganisms is normally known as hydantoinase because of its role as a biocatalyst in the synthesis of d- and l-amino acids for the industrial production of antibiotic precursors and its broad substrate specificity. Dihydropyrimidinase belongs to the cyclic amidohydrolase family, which also includes imidase, allantoinase, and dihydroorotase. Although these metal-dependent enzymes share low levels of amino acid sequence homology, they possess similar active site architectures and may use a similar mechanism for catalysis. By contrast, the five human dihydropyrimidinase-related proteins possess high amino acid sequence identity and are structurally homologous to dihydropyrimidinase, but they are neuronal proteins with no dihydropyrimidinase activity. In this chapter, we summarize and discuss current knowledge and the recent advances on the structure, catalytic mechanism, and inhibition of dihydropyrimidinase.Enzymes are dynamic in nature and understanding their activity depends on exploring their overall structural fluctuation as well as transformation at the active site in free state as well as turnover conditions. selleck chemicals In this chapter, the application of several different spectroscopy techniques viz. single molecule spectroscopy, ultrafast spectroscopy and Raman spectroscopy in the context of enzyme dynamics and catalysis are discussed. The importance of such studies are significant in the understanding of new discoveries of drugs, cure for some lethal diseases, gene modification as well as in industrial applications.

Skip to toolbar