-
Thomson posted an update 7 months, 1 week ago
These results demonstrated that the hierarchical porous SF/PLLA fibrous membranes are promising off-the-shelf scaffolds for muscular artery regeneration.Chitin is one of the major components of the fungal cell wall and contributes to the mechanical strength and shape of the fungal cell. Zn(II)2Cys6 transcription factors are unique to the fungal kingdom and have a variety of functions in some fungi. However, the mechanisms by which Zn(II)2Cys6 proteins affect entomopathogenic fungi are largely unknown. Here, we characterized the Zn(II)2Cys6 transcription factor BbTpc1 in the insect pathogenic fungus Beauveria bassiana. Disruption of BbTpc1 resulted in a distinct changes in vegetative growth and septation patterns, and a significant decrease in conidia and blastospore yield. The ΔBbTpc1 mutant displayed impaired resistance to chemical stresses and heat shock and attenuated virulence in topical and intrahemocoel injection assays. Importantly, the ΔBbTpc1 mutant had an abnormal cell wall with altered wall thickness and chitin synthesis, which were accompanied by transcriptional repression of the chitin synthetase family genes. In addition, comparative transcriptomics revealed that deletion of BbTpc1 altered fungal asexual reproduction via different genetic pathways. These data revealed that BbTpc1 regulates fungal development, chitin synthesis and biological control potential in B. bassiana.Protein oligomers, which are formed due to the aggregation of protein molecules under physiological stress, are neurotoxic and responsible for several neurological diseases. Early detection of protein oligomers is essential for the timely intervention in the associated diseases. Although several probes have been developed for the detection of insoluble matured protein fibrils, fluorescent probes with emission in the near infrared (NIR) region for probing protein oligomers are very rare. In the present study we have designed and synthesized a glucose-conjugated BODIPY dye with emission in the NIR spectral range. Our detailed studies show that the new probe is not only capable of detecting matured fibrils but can also probe the formation of oligomers from the native protein. The new probe shows a large increase in its emission intensity upon association with oligomers and matured fibrils. Hence, the present probe has a great potential for the in vivo imaging of protein oligomers and matured fibrils. Detailed spectroscopic properties of the new probes in molecular solvents have been performed to understand its oligomers- and fibril- sensing mechanism.Alginate lyases are essential tools to prepare alginate oligosaccharides with various biological activities. However, alginate lyases with excellent properties such as high activity and good thermal stability are still in shortage. Therefore, it is crucial to exploit new alginate lyases with high activity and polysaccharide-degrading efficiency for alginate oligosaccharide preparation. Herein, we proposed to construct a novel hybrid alginate lyase with improved property by module recombination. The hybrid alginate lyase, designated as Aly7C, was successfully constructed by recombining the carbohydrate binding module (CBM) of Aly7A with the catalytic module of Aly7B. Interestingly, the hybrid enzyme Aly7C exhibited higher activity than the catalytic domain. Moreover, it could degrade sodium alginate, polyM and polyG into oligosaccharides with degrees of polymerization (Dps) 2-5, which exhibit perfect product specificity. This work provides a new insight into well-defined generation of alginate oligosaccharides with associated CBMs and enhances the understanding of functions of the modules.Peripheral nerve injury is a common clinical problem often requiring surgical nerve reconstruction. To this end, tissue-engineered conduit has been proved to be crucial for nerve reconstruction. Despite its progress in recent years, the design and fabrication of translational biomimetic nerve conduits is highly challenging. Therefore, this study aims to design and fabricate mechanically-tunable nerve conduits with biomimetic structural features of the human nerve suitable for nerve tissue engineering. Herein, we employed combinatorial approach comprising of electrohydrodynamic (EHD) jet printing, dip-coating, and electrospinning techniques for fabricating triple-layered conduits. selleck The intricate structural details were achieved via high-resolution EHD jet printed PCL filaments with tunable directionality, as the innermost layer; followed by dip coating of gelatin hydrogels to form the middle layer, and lastly, wrapped with electrospun PCL nanofibers as an outer layer of the conduits. The mechanical properties, porosity, and biocompatibility of the fabricated conduits were studied and compared with control. The results of this study confirmed that the combinatorial approach has greater potential to fabricate mechanically-tunable triple-layered conduits with favorable neuronal precursor and vascular cell compatibility.Insect mitochondrial DNA (mtDNA) ranges from 14 to 19 kbp, and the size difference is attributed to the AT-rich control region. Jewel wasps have a parasitoid lifestyle, which may affect mitochondria function and evolution. We sequenced, assembled, and annotated mitochondrial genomes in Nasonia and outgroup species. Gene composition and order are conserved within Nasonia, but they differ from other parasitoids by two large inversion events that were not reported before. We observed a much higher substitution rate relative to the nuclear genome and mitochondrial introgression between N. giraulti and N. oneida, which is consistent with previous studies. Most strikingly, N. vitripennis mtDNA has an extremely long control region (7665 bp), containing twenty-nine 217 bp tandem repeats and can fold into a super-cruciform structure. In contrast to tandem repeats commonly found in other mitochondria, these high-copy repeats are highly conserved (98.7% sequence identity), much longer in length (approximately 8 Kb), extremely GC-rich (50.7%), and CpG-rich (percent CpG 19.4% vs. 1.1% in coding region), resulting in a 23 kbp mtDNA beyond the typical size range in insects. These N. vitripennis-specific mitochondrial repeats are not related to any known sequences in insect mitochondria. Their evolutionary origin and functional consequences warrant further investigations.