Activity

  • Weinreich posted an update 9 months ago

    Mosquito-borne diseases having the greatest impact on human health are typically prevalent in the tropical belt of the world. However, these diseases are conquering temperate regions, raising the question of the role of temperature on their dynamics and expansion. Temperature is one of the most significant abiotic factors affecting, in many ways, insect vectors and the pathogens they transmit. Here, we debate the veracity of this claim by synthesizing current knowledge on the effects of temperature on arboviruses and their vectors, as well as the outcome of their interactions.Paenibacillus polymyxa is an important member of the plant growth-promoting rhizobacteria. P. polymyxa YC0136 inoculation had beneficial effect on growth promotion and biological control of tobacco (Nicotiana tabacum L.) under field conditions. This study aimed to reveal the growth-promoting mechanisms of strain YC0136. In growth-promotion assays, tobacco plant height was increased by 8.42% and 8.25% at 60 and 90 days, respectively, after inoculation with strain YC0136. Strain YC0136 also promoted the accumulation of tobacco biomass in varying degrees. Following inoculation with strain YC0136, 3,525 and 4,368 tobacco genes were up-regulated and down-regulated, respectively. Strain YC0136 induced the expression of plant hormone-related genes in tobacco, including auxin, cytokinin, and gibberellin, as well as transcription factors related to stress resistance such as WRKY and MYB. In addition, strain YC0136 induced the up-regulation of genes in the phenylpropanoid biosynthesis pathway by 1.51-4.59 times. Interaction with tobacco also induced gene expression changes in strain YC0136, with 286 and 223 genes up-regulated and down-regulated, respectively. Tobacco interaction induced up-regulation of the ilvB gene related to auxin biosynthesis in strain YC0136 by 1.72 times and induced expression of some nutrient transport genes. This study contributes to our understanding of the growth-promoting mechanisms of strain YC0136 on tobacco and provides a theoretical basis for the application of P. polymyxa YC0136 as a biological fertilizer.Influenza A virus (IAV) poses a major threat to global public health and is known to employ various strategies to usurp the host machinery for survival. check details Due to its fast-evolving nature, IAVs tend to escape the effect of available drugs and vaccines thus, prompting the development of novel antiviral strategies. High-throughput mass spectrometric screen of host-IAV interacting partners revealed host Filamin A (FLNA), an actin-binding protein involved in regulating multiple signaling pathways, as an interaction partner of IAV nucleoprotein (NP). In this study, we found that the IAV NP interrupts host FLNA-TRAF2 interaction by interacting with FLNA thus, resulting in increased levels of free, displaced TRAF2 molecules available for TRAF2-ASK1 mediated JNK pathway activation, a pathway critical to maintaining efficient viral replication. In addition, siRNA-mediated FLNA silencing was found to promote IAV replication (87% increase) while FLNA-overexpression impaired IAV replication (65% decrease). IAV NP was observed to be a crucial viral factor required to attain FLNA mRNA and protein attenuation post-IAV infection for efficient viral replication. Our results reveal FLNA to be a host factor with antiviral potential hitherto unknown to be involved in the IAV replication cycle thus, opening new possibilities of FLNA-NP interaction as a candidate anti-influenza drug development target.Phytophthora comprises a group of filamentous plant pathogens that cause serious crop diseases worldwide. It is widely known that a complex effector repertoire was secreted by Phytophthora pathogens to manipulate plant immunity and determine resistance and susceptibility. It is also recognized that Phytophthora pathogens may inhabit natural niches within complex environmental microbes, including bacteria. However, how Phytophthora pathogens interact with their cohabited microbes remains poorly understood. Here, we present such an intriguing case by using Phytophthora-bacteria interaction as a working system. We found that under co-culture laboratory conditions, several Phytophthora pathogens appeared to block the contact of an ecologically relevant bacterium, including Pseudomonas fluorescence and a model bacterium, Escherichia coli. We further observed that Phytophthora sojae utilizes a conserved Crinkler (CRN) effector protein, PsCRN63, to impair bacterial growth. Phytophthora capsici deploys another CRN effector, PcCRN173, to interfere with bacterial flagellum- and/or type IV pilus-mediated motility whereas a P. capsici-derived RxLR effector, PcAvh540, inhibits bacterial swimming motility, but not twitching motility and biofilm formation, suggesting functional diversification of effector-mediated Phytophthora-bacteria interactions. Thus, our studies provide a first case showing that the filamentous Phytophthora pathogens could deploy effectors to interfere with bacterial growth and motility, revealing an unprecedented effector-mediated inter-kingdom interaction between Phytophthora pathogens and bacterial species and thereby uncovering ecological significance of effector proteins in filamentous plant pathogens besides their canonical roles involving pathogen-plant interaction.Pristinamycin biosynthesis in Streptomyces pristinaespiralis is governed by a complex hierarchical signaling cascade involving seven different transcriptional regulators (SpbR, PapR1, PapR2, PapR3, PapR4, PapR5, and PapR6). The signaling cascade is triggered by γ-butyrolactone (GBL)-like effector molecules, whereby the chemical structure of the effector, as well as its biosynthetic origin is unknown so far. Three of the pristinamycin transcriptional regulators (SpbR, PapR3, and PapR5) belong to the type of γ-butyrolactone receptor (GBLR). GBLRs are known to either act as “real” GBLRs, which bind GBLs as ligands or as “pseudo” GBLRs binding antibiotics or intermediates thereof as effector molecules. In this study, we performed electromobility shift assays (EMSAs) with SpbR, PapR3, and PapR5, respectively, in the presence of potential ligand samples. Thereby we could show that all three GBLRs bind synthetic 1,4-butyrolactone but not pristinamycin as ligand, suggesting that SpbR, PapR3, and PapR5 act as “real” GBLRs in S.

Skip to toolbar