Activity

  • Williams posted an update 9 months ago

    ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.We previously reported the antibacterial activity of CD437, a known antitumor compound. It proved to be a potent antimicrobial agent effective against both growing and persister cells of methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report the synthesis of a panel of analogs and their effect on both MRSA and cancer cells. The hydrophobic group of the parent compound was varied in steric bulk, and lipid-mimicking analogs were tested. Biological assessment confirmed that the adamantane moiety is the most effective substitution for antibacterial activity, and some preferential action in cancer over MRSA was achieved. Copyright © 2019 American Chemical Society.Loss of dopamine neurons is central to the manifestation of Parkinson’s disease motor symptoms. The dopamine precursor L-DOPA, the most commonly used therapeutic agent for Parkinson’s disease, can restore normal movement yet cause side-effects such as dyskinesias upon prolonged administration. Dopamine D1 and D2 receptors activate G-protein- and arrestin-dependent signaling pathways that regulate various dopamine-dependent functions including locomotion. Studies have shown that shifting the balance of dopamine receptor signaling toward the arrestin pathway can be beneficial for inducing normal movement, while reducing dyskinesias. However, simultaneous activation of both D1 and D2Rs is required for robust locomotor activity. Thus, it is desirable to develop ligands targeting both D1 and D2Rs and their functional selectivity. Here, we report structure-functional-selectivity relationship (SFSR) studies of novel apomorphine analogs to identify structural motifs responsible for biased activity at both D1 and D2Rs. Copyright © 2020 American Chemical Society.DDR1 is considered as a promising target for cancer therapy, and selective inhibitors against DDR1 over other kinases may be considered as promising therapeutic agents. Herein, we have identified a series of 3′-(imidazo[1,2-a]pyrazin-3-yl)-[1,1′-biphenyl]-3-carboxamides as novel selective DDR1 inhibitors. Among these, compound 8v potently inhibited DDR1 with an IC50 of 23.8 nM, while it showed less inhibitory activity against DDR2 (IC50 = 1740 nM) and negligible activities against Bcr-Abl (IC50 > 10 μM) and c-Kit (IC50 > 10 μM). 8v also exhibited excellent selectivity in a KINOMEscan screening platform with 468 kinases. This compound dose-dependently suppressed NSCLC cell tumorigenicity, migration, and invasion. Collectively, these studies support its potential application for treatment of NSCLC. Copyright © 2020 American Chemical Society.With approximately 37 million people living with HIV worldwide and an estimated 2 million new infections reported each year, the need to derive novel strategies aimed at eradicating HIV-1 infection remains a critical worldwide challenge. One potential strategy would involve eliminating infected cells via antibody-dependent cellular cytotoxicity (ADCC). HIV-1 has evolved sophisticated mechanisms to conceal epitopes located in its envelope glycoprotein (Env) that are recognized by ADCC-mediating antibodies present in sera from HIV-1 infected individuals. Our aim is to circumvent this evasion via the development of small molecules that expose relevant anti-Env epitopes and sensitize HIV-1 infected cells to ADCC. Rapid elaboration of an initial screening hit using parallel synthesis and structure-based optimization has led to the development of potent small molecules that elicit this humoral response. Efforts to increase the ADCC activity of this class of small molecules with the aim of increasing their therapeutic potential was based on our recent cocrystal structures with gp120 core. Copyright © 2019 American Chemical Society.As regulators of steroidogenesis, development, and metabolism, the nuclear receptor 5A (NR5A) subfamily members steroidogenic factor 1 (SF-1) and liver receptor homologue 1 (LRH-1) are important pharmacological targets for cancers and metabolic diseases. Evaluation of small molecule modulators and candidate endogenous ligands for these orphan receptors has been hindered by the lack of accessible, robust direct-binding assays. Here, we leverage the potency of our new NR5A agonist (6N) to create a high-affinity probe for fluorescence polarization competition assays by conjugating 6N to fluorescein (FAM). The 6N-FAM probe tightly binds the NR5A receptors and detects direct binding of synthetic and phospholipid ligands. For 25 LRH-1 agonists, affinity predicts potency in cellular activation assays, demonstrating the potential for this assay in drug discovery. Moreover, phospholipids dilauroylphosphatidylcholine and phosphatidylinositol(4,5)phosphate bind with high affinity, demonstrating this assay is robust for evaluation of candidate endogenous ligands for human NR5A receptors. Copyright © 2019 American Chemical Society.We describe the discovery of three structurally differentiated potent and selective MTH1 inhibitors and their subsequent use to investigate MTH1 as an oncology target, culminating in target (in)validation. Tetrahydronaphthyridine 5 was rapidly identified as a highly potent MTH1 inhibitor (IC50 = 0.043 nM). Cocrystallization of 5 with MTH1 revealed the ligand in a Φ-cis-N-(pyridin-2-yl)acetamide conformation enabling a key intramolecular hydrogen bond and polar interactions with residues Gly34 and Asp120. Modification of literature compound TH287 with O- and N-linked aryl and alkyl aryl substituents led to the discovery of potent pyrimidine-2,4,6-triamine 25 (IC50 = 0.49 nM). MM-102 Triazolopyridine 32 emerged as a highly selective lead compound with a suitable in vitro profile and desirable pharmacokinetic properties in rat. Elucidation of the DNA damage response, cell viability, and intracellular concentrations of oxo-NTPs (oxidized nucleoside triphosphates) as a function of MTH1 knockdown and/or small molecule inhibition was studied. Based on our findings, we were unable to provide evidence to further pursue MTH1 as an oncology target. Copyright © 2019 American Chemical Society.

Skip to toolbar