-
Munoz posted an update 10 months, 1 week ago
However, we conducted only RNA-seq analysis, and no confirmation of significant up-regulation or down-regulation has been conducted. These results suggest that these genes were up-regulated for induction of the offensive phenotype and down-regulated for induction of the defensive phenotype. Phylogenetic analysis indicated that possible gene duplications of PRL and CALCA have occurred during amphibian evolution. Based on these findings, it is suggested that a trade-off of molecular signaling pathways exists between the two distinct phenotypic expressions. The results also suggest that hormonal-gene duplications might have contributed to the acquisition of phenotypic plasticity in amphibians.To satisfy their requirements for food and safety, animals need certain habitats to live. Marmots generally select habitats with certain elevation, land surface temperature, soil and vegetation type, and certain mountain slope and aspect; however, what habitats are needed at relatively smaller scales are poorly known. The Himalayan marmot (Marmota himalayana) is distributed mainly on the Qinghai-Tibet Plateau, a region exhibiting diversified topographic features, and the Zoige wetland in the northeast part of the plateau is also the home of the Himalayan marmot. The region is famous for its plateau peat bog, and the suitable habitats for Himalayan marmots are patchily distributed in the wetland. To investigate what kinds of patches are preferred by the marmot in this wetland ecosystem, we measured and compared the soil and vegetation characteristics of used and unused patches. We found that unlike factors governing the habitat selection at macroscales, patches characterized by flat ground and low soil moisture content, with medium vegetation standing height and low vegetation density, are selected in the Zoige wetland. selleck screening library Patches of this kind are selected to meet the marmots’ requirements for burrow construction and predator avoidance in such a wetland ecosystem. Together with previous studies on habitat selection of the marmot species at macroscales, we showed that to explore how the animals survive in an environment, it is important to conduct the analysis at multiple scales.In Hiroshima Bay, parasitic isopods of the genus Mothocya infest the black sea bream Acanthopagrus schlegelii (Bleeker, 1854) and the Japanese halfbeak Hyporhamphus sajori (Temminck and Schlegel, 1846), two fish species that are abundant and commercially important in the Seto Inland Sea of Japan. Immature and mature Mothocya individuals can infect both juveniles and adults of H. sajori, while immature Mothocya are known to parasitize juveniles of A. schlegelii; i.e., no Mothocya parasites are found in adult A. schlegelii. The identification of the immature Mothocya parasitizing juveniles of A. schlegelii remains uncertain, because Mothocya species are morphologically identifiable only based on adult females. Also, the biological/ecological relationship between the hosts and parasites has not been studied. Here, we identified the parasites on A. schlegelii as Mothocya parvostis Bruce, 1986 by molecular sequence analyses along with other parasites obtained from H. sajori, the latter being morphologically confirmed by comparison with paratype materials of M. parvostis as well as the similar congener Mothocya sajori Bruce, 1986. The growth rates of the infected A. schlegelii juveniles from June to September in the years 2013-2015 and 2018 were significantly lower than those of the uninfected ones, suggesting a negative effect of the infection on the hosts. Our data on the prevalence and duration of the infection, as well as the body size gain of the hosts and parasites, corroborate a hypothesis that M. parvostis would utilize A. schlegelii as an optional intermediate host before it reaches the final host, H. sajori.Recently, two mitochondrial haplotypes, H4 and H8, of Manis sp. were found in two seizures in Hong Kong that do not correspond to Manis javanica, Manis pentadactyla or Manis crassicaudata of Asian pangolin species or any African pangolin species. It was proposed that both haplotypes derived from Manis culionensis, an unknown lineage of M. javanica, or a thus far unidentified Asian pangolin species (Manis sp.). To further investigate these three hypotheses, we used two mitochondrial genes of all eight known extant pangolin species and conducted phylogenetic tree reconstructions, divergence time estimation, and species delimitation analyses. All analyses consistently confirmed that these two haplotypes of Manis sp. constitute a distinct lineage, potentially representing a fifth Asian pangolin species, which originated around the Late Miocene to Early Pliocene (6.95 [4.64-9.85] million years ago). Our study provides genetic support for a potential fifth Asian pangolin species and helps to better understand species diversity of Asian pangolins, which is urgently needed for effective conservation work.We surveyed the genetic structure of Hynobius nigrescens Stejneger, 1907, a lentic breeding salamander widespread throughout montane and lowland regions of northeastern Japan. We performed a mitochondrial DNA analysis to explore intraspecific genetic variation and infer the evolutionary population history of H. nigrescens. Complete 1141 bp sequences of the mitochondrial cytochrome b gene were studied for 134 adult and larval individuals collected from 62 localities, encompassing the known range of the species. Hynobius nigrescens proved to be monophyletic, including two major clades (Clade II from southwestern Hokuriku and Clade I from all other localities). The latter clade comprises four well-supported and geographically structured subclades, which show genetic distances smaller than those seen in the widely sympatric species Hynobius lichenatus. Results of population statistical analyses indicated that Clade II of the westernmost range of H. nigrescens seems to have maintained a constant population size, while Clade I from most of the northeastern species range shows a tendency of recent population expansion, which is evident in Subclades I-A from the northernmost range and I-B from southern Tohoku to northern Kanto and eastern Chubu. In contrast, Subclades I-C from northeastern Chubu and Sado Is. and I-D from northwestern Chubu to Hokuriku seem to have been relatively stable in population size. Hynobius nigrescens differs greatly from other salamander species from northeastern Japan in its much more recent periods of genetic differentiation and its pattern thereof, and is suggested to be a young faunal element in this region.