-
Bright posted an update 7 months, 1 week ago
The aim of this study was to investigate the role of scoparone (SCO) in hepatic fibrosis. For this, we conducted in vivo and in vitro experiments. In vivo rats that were divided into six groups, control, carbon tetrachloride, and colchicine, as well as SCO groups, SCO50, SCO100, and SCO200 treated with 50, 100, and 200 mg/kg SCO doses, respectively. Furthermore, SCO was shown to inhibit Toll-like receptor-4 (TLR-4)/nuclear factor kappa-B (NF-κB; TLR-4/NF-κB) signals by inhibiting TLR-4, which in turn downregulates the expression of MyD88, promotes NF-κB inhibitor-α, NF-κB inhibitor-β, and NF-κB inhibitor-ε activation, while inhibiting NF-κB inhibitor-ζ. Subsequently, the decrease of phosphorylation of nuclear factor-κB levels leads to the downregulation of the downstream inflammatory factors’ tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta, thus weakening hepatic fibrosis. Notably, the SCO200 treated group presented the most significant improvement. Hence, we conclude that SCO alleviates hepatic fibrosis by inhibiting TLR-4/NF-κB signals.Rising levels of atmospheric carbon dioxide (CO2 ) could, potentially, be exploited as a means to increase seed yield and maintain food security, especially for cereal grains. Although there have been multiple cultivar trials indicating that significant yield variation occurs, the basis for these differences has not been entirely elucidated. Here, we focus on two rice cultivars that differed in field trials to their yield sensitivity to elevated CO2 Yangdao6hao (YD6), and Wuyunjing23 (W23) to assess whether observed yield differences (YD6 > W23) were associated with concurrent changes in leaf-level characteristics. At ambient levels of CO2 , leaf net photosynthesis (A) of YD6 was compatible with that of W23. However, at elevated CO2 , A was higher for YD6 relative to W23. The stability of leaf Rubisco content, biochemical characteristics (Vc,max, and Jmax ), nitrogen enzymatic activity, and chlorophyll concentration differed significantly, with greater values observed for YD6 relative to W23 at elevated CO2 . While such results are consistent with other studies, we also demonstrate that a higher ratio of carbon sinks (seed) to carbon sources (leaf), were linked to increases in cytokinins, and slower flag leaf senescence for the YD6 relative to the W23 cultivar at elevated CO2 . While additional data for a broader genetic selection are needed, the current study suggests a link between source/sink carbon assimilation, maintenance of photosynthetic biochemistry, and slower leaf senescence for rice cultivars that show a stronger yield response to projected CO2 levels. This information, in turn, may provide suitable metrics for future CO2 selection among rice cultivars.BOR1 is an efflux transporter of boron (B), responsible for loading B into the xylem. It has been reported that nitrate (NO3- ) concentrations significantly influence B concentrations in leaves and BOR1 mRNA accumulation in roots. Here, to unravel the interactive effects of B and NO3- on plant growth and the function of BOR1 under the combination of B and NO3- , seedling growth was analyzed in Col-0 and bor1 mutants. The growth of bor1 mutants was negatively affected by high NO3- but neither by potassium chloride (KCl) nor ammonium (NH4+ ) under low B conditions, suggesting the involvement of BOR1 in growth under high NO3- . Mutants of bor2 and bor4 did not exhibit such growth responses, suggesting that this effect was specific to BOR1 among the BORs tested. Under low B conditions, loss of the BOR1 function led to a more significant decrease in B concentrations in the presence of high NO3- compared to normal NO3- . Additionally, grafting experiments demonstrated that these effects of NO3- occurred when BOR1 is absent in roots. High NO3- treatment elevated BOR1 mRNA accumulation while the BOR1 protein accumulation was downregulated. These apparent opposite responses indicated that the transcriptional and (post-)translational regulations follow different patterns. Our work provides evidence of a novel regulation of BOR1 and another B transport system by both B and NO3- in an interactive manner.Circadian rhythms influence daily molecular oscillations in gene/protein expression and aspects of biology and physiology, including behaviour, body temperature and sleep-wake cycles. These circadian rhythms have been associated with a number of metabolic, immune and microbial changes that correlate with health and susceptibility to disease, including infection. While light is the main inducer of circadian rhythms, other factors, including the microbiota, can have important effects on peripheral rhythms. The microbiota have been of significant interest to many investigators over the past decade, with the development of molecular techniques to identify large numbers of species and their function. These studies have shown microbial associations with disease susceptibility, and some of these have demonstrated that alterations in microbiota cause disease. Microbial circadian oscillations impact host metabolism and immunity directly and indirectly. Interestingly, microbial oscillations also regulate host circadian rhythms, and the host circadian rhythms in turn modulate microbial composition. selleck chemicals Thus, it is of considerable interest and importance to understand the crosstalk between circadian rhythms and microbiota and especially the microbial influences on the host. In this review, we aim to discuss the role of circadian microbial oscillations and how they influence host immunity. In addition, we discuss how host circadian rhythms can also modulate microbial rhythms. We also discuss potential connections between microbes and circadian rhythms and how these may be used therapeutically to maximize clinical success.
To examine the type of vesicular glutamate transporter (VGLUT)-immunopositive (+) axons that coexpress neuropeptides in the rat and human dental pulp, which may help understand peripheral mechanism of pulpal inflammatory pain in rats and humans.
The trigeminal ganglia (TG) and the dental pulp of the maxillary molar teeth from three male Sprague-Dawley rats weighing 300-330g and dental pulps of three healthy human (male) maxillary premolar teeth from three 16 to 28-year-old patients extracted for orthodontic treatment were used. The type of VGLUT+axons that coexpress substance P (SP)- and/or calcitonin gene-related peptide (CGRP) and parvalbumin in the rat TG and in the axons of the rat and the human dental pulp was examined by double fluorescence immunohistochemistry and quantitative analysis. Results were analyzed using one-way anova and the Kruskal-Wallis test.
SP and CGRP were expressed in many human VGLUT1+pulpal axons but not in the rat VGLUT1+TG neurons and pulpal axons (P<0.05). SP and CGRP were expressed in a considerable number of human VGLUT2+pulpal axons and also in many rat TG neurons and pulpal axons.