-
Burgess posted an update 7 months, 1 week ago
The redox chemistry of uranium is dominated by single electron transfer reactions while single metal four-electron transfers remain unknown in f-element chemistry. Here we show that the oxo bridged diuranium(iii) complex [K(2.2.2-cryptand)]2[((Me3Si)2N)3U2(μ-O)], 1, effects the two-electron reduction of diphenylacetylene and the four-electron reduction of azobenzene through a masked U(ii) intermediate affording a stable metallacyclopropene complex of uranium(iv), [K(2.2.2-cryptand)][U(η 2-C2Ph2)N(SiMe3)23], 3, and a bis(imido)uranium(vi) complex [K(2.2.2-cryptand)][U(NPh)2N(SiMe3)23], 4, respectively. The same reactivity is observed for the previously reported U(ii) complex [K(2.2.2-cryptand)][UN(SiMe3)23], 2. Computational studies indicate that the four-electron reduction of azobenzene occurs at a single U(ii) centre via two consecutive two-electron transfers and involves the formation of a U(iv) hydrazide intermediate. The isolation of the cis-hydrazide intermediate [K(2.2.2-cryptand)][U(N2Ph2)N(SiMe3)23], 5, corroborated the mechanism proposed for the formation of the U(vi) bis(imido) complex. The reduction of azobenzene by U(ii) provided the first example of a “clear-cut” single metal four-electron transfer in f-element chemistry.Simple α-(bromomethyl)styrenes can be processed to a variety of 1,1-difluorinated electrophilic building blocks via I(I)/I(III) catalysis. This inexpensive main group catalysis strategy employs p-TolI as an effective organocatalyst when combined with Selectfluor® and simple amine·HF complexes. Modulating Brønsted acidity enables simultaneous geminal and vicinal difluorination to occur, thereby providing a platform to generate multiply fluorinated scaffolds for further downstream derivatization. The method facilitates access to a tetrafluorinated API candidate for the treatment of amyotrophic lateral sclerosis. Preliminary validation of an enantioselective process is disclosed to access α-phenyl-β-difluoro-γ-bromo/chloro esters.A new regioselective 3,4-difunctionalization of 3-chloropyridines via 3,4-pyridyne intermediates is reported. Regioselective lithiation of 3-chloro-2-ethoxypyridine and a related 2-thio-derivative followed by treatment with aryl- and alkylmagnesium halides as well as magnesium thiolates at -78 °C produced 3,4-pyridynes during heating to 75 °C. Regioselective addition of the Grignard moiety in position 4 followed by an electrophilic quench in position 3 led to various 2,3,4-trisubstituted pyridines. This method was adapted into a continuous flow set-up. As an application, we have prepared a key intermediate for (±)-paroxetine.There has been great interest in the fabrication of solid surfaces with desirable under-liquid wettability, and especially under-liquid dual-lyophobicity, because of their potential for widespread use. However, there remains the lack of a general principle to modulate the under-liquid wettability in terms of surface energy (SE). Herein, we found that the relative proportion between the polar and dispersive components in SE that reflects the competition between hydrophilicity and lipophilicity governs the under-liquid wettability of the solid surface. For the first time, we introduced hydrophilic-lipophilic balance (HLB) calculated solely based on the amount and type of hydrophilic and lipophilic fragments in surface molecules to rapidly predict the under-liquid wettability of a solid surface, thereby guiding the fabrication of solid surfaces with desirable under-liquid wettability. Accordingly, the under-liquid dual superlyophobic surfaces in a nonpolar oil-water-solid system were fabricated by grafting molecules with appropriate HLB values (e.g., 6.341-7.673 in a cyclohexane-water-solid system) onto porous nanofibrous membranes, which were able to achieve continuous separation of oil-water mixtures. This work provides reasonable guidance for the fabrication of solid surfaces with targeted under-liquid wettability, which may lead to advanced applications in oil-water-solid systems.The development of synthetic routes to access stable, ultra-small (i.e. less then 5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger particles. Here, we demonstrate a simple and effective host-guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites. check details Cr3O(OH)(H2O)2(terephthalate)3 (Cr-MIL-101), made of large mesopore-sized pseudo-spherical cages, allows fast and efficient diffusion of perovskite precursors within its pores, and promotes the formation of stable, ∼3 nm-wide lead bromide perovskite QDs. CsPbBr3, MAPbBr3 (MA+ = methylammonium), and (FA)PbBr3 (FA+ = formamidinium) QDs exhibit significantly blue-shifted emission maxima at 440 nm, 446 nm, and 450 nm, respectively, as expected for strongly confined perovskite QDs. Optical characterization and composite modelling confirm that the APbBr3 (A = Cs, MA, FA) QDs owe their stability within the MIL-101 nanocrystals to both short- and long-range interfacial interactions with the MOF pore walls.Photovoltage and photocurrents below theoretical limits in dye-sensitized photoelectrochemical solar energy conversion systems are usually attributed to electron loss processes such as dye-electron and electrolyte-electron recombination reactions within the porous photoanode. Whether recombination is a major loss mechanism is examined here, using a multiscale reaction-diffusion computational model to evaluate system characteristics. The dye-sensitized solar cell with an I-/I3 – redox couple is chosen as a simple, representative model system because of the extensive information available for it. Two photoanode architectures with dye excitation frequencies spanning 1-25 s-1 are examined, assuming two distinct recombination mechanisms. The simulation results show that although electrolyte-electron reactions are very efficient, they do not significantly impact photoanode performance within the system as defined. This is because the solution-phase electrolyte chemistry plays a key role in mitigating electron losses through coupled reactions that produce I- within the photoanode pores, thereby cycling the electrolyte species without requiring that all electrolyte reduction reactions take place at the more distantly located cathode.