Activity

  • Cheng posted an update 7 months, 2 weeks ago

    High concentrations of Aβ25-35 (above 20 μM) increased signal intensity in a recording channel corresponding to the calcium-sensing probe. However, this phenomenon was also observed in Ca2+-free conditions and even in liposomes without Fluo-3, so we interpreted it as an artifact. Using the described technique, we were not able to detect the formation of calcium channels by several other amyloid peptides. Considering that liposomes appeared resistant to reasonable concentrations of solvents, we expect that described flowmetric technique can be used in high-throughput screening applications.Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and cellular mechanisms regulating HCC pathogenesis and progression are not completely understood. DYNLL1 is essential for the development and expansion of MYC-driven B cell lymphoma, and also regulates genomic stability and responses to DNA-damaging chemotherapy in BRCA1-deficient tumors. However, the role and regulation of DYNLL1 has not been previously studied in the context of HCC. Here we report that DYNLL1 gene is hypomethylated and its expression is upregulated in HCC patients compared to healthy controls. The expression of DYNLL1 changes in a tumor grade- and stage-dependent manner in HCC. In this study, we further show that high DYNLL1 expression results in shorter overall and progression-free survival in hepatocellular carcinoma patients. Similar to DYNLL1, one of its protein interactors, RACK1, also shows decreased CpG-aggregated methylation and increased expression in HCC. RACK1 expression increases from early to late stage and from low to high grade in HCC. We found that high RACK1 expression is significantly associated with increased mortality of HCC patients. The present study shows that the epigenetic regulation of DYNLL1 and its consequent upregulation might be contributing to cancer development and progression in HCC. Its higher expression in late stage or high grade HCC may favor more aggressive disease as pointed by the increased mortality in high expression cohort. A better mechanistic understanding of the role of DYNLL1 in HCC will be needed to develop targeted treatment strategies in the future.Cervical cancer are generally caused by a persistent infection with the oncogenic virus, HPV. CDK inhibitor Patients with HPV integration are more prone to develop cervical cancer than patients without integration. In this proof-of-concept study, we aimed to develop a sensitive method based on targeted amplicon based NGS for early and precise detection of high-risk HPV-genotypes that are highly associated with the development of cervical cancer. Furthermore, we aimed to investigate if amplicon based NGS allowed for HPV genotyping in cervical lesions and whether it could detect HPV integration. The cohort included a group of CIN3+ biopsies (n = 64), CIN2 samples that progressed (n = 5), CIN2 samples that regressed (n = 3), healthy controls (n = 10), and plasma samples (n = 10) from cervical cancer patients. Sequencing was performed using a custom targeted NGS panel designed to detect all 25 high-risk and probably high-risk and two low-risk HPV genotypes. The method was validated by the SPF10 PCR-DEIA-LiPA25 assay. In the co line. The HPV panel provides a highly cost-effective method for HPV detection and genotyping, as exemplified by a list price of around 75 € per sample. In conclusion, the current study demonstrates that targeted NGS is capable of detecting and genotyping HPV in both FFPE biopsies and plasma samples. This method provides for early diagnosis and prognosis of cervical cancer disease progression, thereby optimizing the potential of recovery and survival for these patients.Telomeres are repetitive nucleoprotein structures located at the ends of chromosomes. Reduction in the number of repetitions causes cell senescence. Cells with high proliferative potential age with each replication cycle. Post-mitotic cells (e.g. cardiovascular cells) have a different aging mechanism. During the aging of cardiovascular system cells, permanent DNA damage occurs in the telomeric regions caused by mitochondrial dysfunction, which is a phenomenon independent of cell proliferation and telomere length. Mitochondrial dysfunction is accompanied by increased production of reactive oxygen species and development of inflammation. This phenomenon in the cells of blood vessels can lead to atherosclerosis development. Telomere damage in cardiomyocytes leads to the activation of the DNA damage response system, histone H2A.X phosphorylation, p53 activation and p21 and p16 protein synthesis, resulting in the SASP phenotype (senescence-associated secretory phenotype), increased inflammation and cardiac dysfunction. Cardiovascular cells show the activity of the TERT subunit of telomerase, an enzyme that prevents telomere shortening. It turns out that disrupting the activity of this enzyme can also contribute to the formation of cardiovascular diseases. Measurements of telomere length according to the “blood-muscle” model may help in the future to assess the risk of cardiovascular complications in people undergoing cardiological procedures, as well as to assess the effectiveness of some drugs.d-Serine plays an important role in modulating N-methyl-d-aspartate receptor (NMDAR) neurotransmission in the mammalian brain by binding to the receptor’s glycine modulatory site (GMS). The cytosolic enzyme serine racemase (SR) converts L-serine to d-serine, while the peroxisomal enzyme d-amino acid oxidase (DAAO) catalyzes the breakdown of d-serine. Although it is important to understand how the activities of SR and DAAO regulate d-serine levels, very little is known about the mechanisms that regulate the expression of SR and DAAO. In this study, we investigated whether the different centrally active drugs affect the expression of SR and DAAO in adult mouse brain. We found that the NMDAR antagonist, MK801, and cocaine, psychotropic drugs that both augment glutamate release, reduce the expression of SR and DAAO. This regulation is brain region selective, and in the case of cocaine, is reversed in part byα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX).

Skip to toolbar