-
Mcmillan posted an update 9 months ago
Fibrosis is a condition characterized by the overproduction of extracellular matrix (ECM) components (e.g., collagen) in the myofibroblasts, causing tissue hardening and eventual organ dysfunction. Currently, the molecular mechanisms that regulate ECM production in the myofibroblasts are still obscure. In this study, we investigated the function of GPRC5B in the cardiac and lung myofibroblasts using real-time RT-PCR and siRNA-mediated knockdown. We discovered a significantly high expression of Gprc5b in the tissues of the fibrosis mice models and confirmed that Gprc5b was consistently expressed in the myofibroblasts of fibrotic hearts and lungs. We also found that Gprc5b expression was associated and may be dependent on the actin-MRTF-SRF signaling pathway. Notably, we observed that Gprc5b knockdown reduced the expression of collagen genes in the cardiac and lung myofibroblasts. Therefore, our findings reveal that GPRC5B enhances collagen production in the myofibroblasts, which directly promotes fibrosis in the tissues.Loss of polarity protein Par3 promotes breast cancer tumorigenesis and metastasis. The underlying molecular mechanisms of Par3 down-regulation and related prognostic significance in breast cancer remain unclear. Here, we discovered that Par3 down-regulation was associated with shorter relapse-free survival in Luminal A subtype of breast cancer. Par3 knockdown promoted breast cancer cells migration and invasion. Importantly, we identified that transcription factor Sp1 bound to PARD3 promoter region and induced Par3 expression. Breast cancer patients with low Sp1 showed significantly worse RFS and low expression level of Par3. Par3 over-expression partially reversed Sp1 knockdown induced migration and invasion. Together, decreased Sp1 level mediates Par3 down-regulation, which correlated with poor prognosis of ER + breast cancer patients, via reduced binding with PARD3 promoter.Linker histone H1 is mainly localized in the linker DNA region, between two nucleosome cores, and regulates chromatin structures linking gene expression. Mammalian oocytes contain the histone H1foo, a distinct member with low sequence similarity to other members in the H1 histone family. Although, from various previous studies, evidence related to H1foo function in chromatin structures is being accumulated, the distribution of H1foo at the target gene loci in a genome-wide manner and the molecular mechanism of H1foo-dependent chromatin architecture remain unclear. In this study, we aimed to identify the target loci and the physiological factor bound to H1foo at the loci. Chromatin immunoprecipitation sequencing analysis of H1foo-overexpressing mouse embryonic stem cells showed that H1foo is enriched around the transcriptional start sites of genes such as oocyte-specific genes and that the chromatin structures at these regions were relaxed. We demonstrated that H1foo was physiologically bound to the nuclear receptor estrogen-related receptor beta (Esrrb), and Esrrb was necessary for H1foo activity of chromatin decondensation at the target loci. The specific localization and interaction with Esrrb were validated in endogenous H1foo of oocytes. Tamoxifen nmr Overall, H1foo induces chromatin decondensation in a locus-specific manner and this function is achieved by interacting with Esrrb.Remodeling of vacuolar membranes mediated by endosomal sorting complex required for transport (ESCRT) is critical for microautophagy induction in budding yeast. Nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) protein kinase elicit recruitment of the ESCRT-0 complex (Vps27-Hse1) onto vacuolar membranes and ESCRT-mediated microautophagy induction. Mitotic protein phosphatase Cdc14 antagonizes TORC1-mediated phosphorylation in macroautophagy induction after nutrient starvation and TORC1 inactivation. Here, we report that Cdc14 downregulates microautophagy induction after TORC1 inactivation. Cdc14 dysfunction stimulated the vacuolar membrane recruitment of Hse1, but not Vps27, after TORC1 inactivation, promoting ESCRT-0 complex formation. Conversely, overexpression of CDC14 compromises Hse1 recruitment on vacuolar membranes and microautophagy induction after TORC1 inactivation. Thus, Cdc14 phosphatase regulates the fluxes of two types of autophagy in the opposite directions, namely, it elicits macroautophagy and attenuates microautophagy.Rab small GTPases regulate intracellular membrane trafficking by interacting with specific binding proteins called Rab effectors. Although Rab6 is implicated in basement membrane formation and secretory cargo trafficking, its precise regulatory mechanisms have remained largely unknown. In the present study we established five knockout cell lines for candidate Rab6 effectors and discovered that knockout of VPS52, a subunit of the GARP complex, resulted in attenuated secretion and lysosomal accumulation of secretory cargos, the same as Rab6-knockout does. We also evaluated the functional importance of the previously uncharacterized C-terminal region of VPS52 for restoring these phenotypes, as well as for the sorting of lysosomal proteins. Our findings suggest that VPS52 is an effector protein that is responsible for the Rab6-dependent secretory cargo trafficking.Retinal pigment epithelium (RPE) cell damage, including mitophagy-associated cell apoptosis, accelerates the pathogenesis of diabetic retinopathy (DR), a common complication of diabetes that causes blindness. Müller cells interact with RPE cells via pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α). Herein, we investigated the role of the RPE cell epidermal growth factor receptor (EGFR)/p38 mitogen-activated protein kinase (p38)/nuclear factor kappa B (NF-κB) pathway in Müller cell-derived TNF-α-induced mitophagy-associated apoptosis during DR. Our results showed that TNF-α released from Müller cells activated the EGFR/p38/NF-κB/p62 pathway to increase mitophagy and apoptosis in RPE cells under high glucose (HG) conditions. Additionally, blockade of the TNF-α/EGFR axis alleviates blood-retina barrier breakdown in diabetic mice. Our data further illustrate the effects of the Müller cell inflammatory response on RPE cell survival, implying potential molecular targets for DR treatment.